
(a)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their
The equilibrium constant for the above
Where,
•
•
•
•
•
•
•
•

Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
(b)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,
The equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•

Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
(c)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,
The equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•

Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
(d)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,
The equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•

Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
(e)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,
The equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•

Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry for Today: General Organic and Biochemistry
- When anisole is treated with excess bromine, the reaction gives a product which shows two singlets in 1H NMR. Draw the product.arrow_forward(ii) Draw a reasonable mechanism for the following reaction: CI NaOH heat OH (hint: SNAr Reaction) :arrow_forwardDraw the major product in each of the following reaction:arrow_forward
- Draw the mechanism for the following Friedel-Craft reaction. AlBr3 Brarrow_forward(a) Draw the structures of A and B in the following reaction. (i) NaNH2, NH3(1) A + B (ii) H3O+arrow_forwardFor the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 →> NO₂+ NO3_(K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → → NO2 + O2 + NO (K2) NO + N2O5- NO2 + NO2 + NO2 (K3) d[N₂O5] __2k‚k₂[N2O5] Indicate whether the following rate expression is acceptable: dt k₁₁+ k₂arrow_forward
- Consider the following decomposition reaction of N2O5(g): For the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 → NO2 + NO3 (K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → NO2 + O2 + NO (K2) NO + N2O5 → NO2 + NO2 + NO2 (K3) Indicate whether the following rate expression is acceptable: d[N2O5] = -k₁[N₂O₂] + K¸₁[NO₂][NO3] - K¸[NO₂]³ dtarrow_forwardIn a reaction of A + B to give C, another compound other than A, B or C may appear in the kinetic equation.arrow_forwardFor the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 →> NO₂+ NO3_(K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → → NO2 + O2 + NO (K2) NO + N2O5- NO2 + NO2 + NO2 (K3) d[N₂O5] __2k‚k₂[N2O5] Indicate whether the following rate expression is acceptable: dt k₁₁+ k₂arrow_forward
- Given the reaction R + Q → P, indicate the rate law with respect to R, with respect to P and with respect to P.arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardk₁ Given the reaction A B, indicate k-1 d[A] (A). the rate law with respect to A: (B). the rate law with respect to B: d[B] dt dtarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




