EBK INTRODUCTION TO CHEMICAL ENGINEERIN
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
8th Edition
ISBN: 9781259878091
Author: SMITH
Publisher: MCGRAW HILL BOOK COMPANY
Question
Book Icon
Chapter 8, Problem 8.21P

(a)

Interpretation Introduction

Interpretation:

The air-standard cycles are to be sketched on PT diagrams for the Carnot cycle and also explain why a PT diagram would not be helpful for depicting power cycles involving liquid/vapor phase changes.

Concept Introduction :

Initially a general treatment is given of paths on a PT diagram for an ideal gas with constant heat capacities undergoing reversible polytropic processes. Equation 3.35c may be written as:

  P=KTδ/δ1

  lnP=lnK+δδ1lnT

  dPP=δδ1dTT

  dPdT=δδ1PT ......(A) Sign of dP/dT is that of δ1,i.e.,+

Special cases { δ=0dP/dT=0δ=1dP/dT=

Where P and T are constant

According to equation A,

  d2PdT2=δδ1(1TdPdTPT2)=δδ11T(δδ1PTPT)

  d2PdT2=δδ1PT2 .....eq B Sign of d2P/dT2 is that of δ,i.e.,+

(b)

Interpretation Introduction

Interpretation:

The air-standard cycles are to be sketched on PT diagrams for the Otto Cycle and also explain why a PT diagram would not be helpful for depicting power cycles involving liquid/vapor phase changes.

Concept Introduction :

Initially a general treatment is given of paths on a PT diagram for an ideal gas with constant heat capacities undergoing reversible polytropic processes. Equation 3.35c may be written as:

  P=KTδ/δ1

  lnP=lnK+δδ1lnT

  dPP=δδ1dTT

  dPdT=δδ1PT ......(A) Sign of dP/dT is that of δ1,i.e.,+

Special cases { δ=0dP/dT=0δ=1dP/dT=

Where P and T are constant

According to equation A,

  d2PdT2=δδ1(1TdPdTPT2)=δδ11T(δδ1PTPT)

  d2PdT2=δδ1PT2 .....eq B Sign of d2P/dT2 is that of δ,i.e.,+

(c)

Interpretation Introduction

Interpretation:

The air-standard cycles are to be sketched on PT diagrams for the Diesel cycle and also explain why a PT diagram would not be helpful for depicting power cycles involving liquid/vapor phase changes.

Concept Introduction :

Initially a general treatment is given of paths on a PT diagram for an ideal gas with constant heat capacities undergoing reversible polytropic processes. Equation 3.35c may be written as:

  P=KTδ/δ1

  lnP=lnK+δδ1lnT

  dPP=δδ1dTT

  dPdT=δδ1PT ......(A) Sign of dP/dT is that of δ1,i.e.,+

Special cases { δ=0dP/dT=0δ=1dP/dT=

Where P and T are constant

According to equation A,

  d2PdT2=δδ1(1TdPdTPT2)=δδ11T(δδ1PTPT)

  d2PdT2=δδ1PT2 .....eq B Sign of d2P/dT2 is that of δ,i.e.,+

(d)

Interpretation Introduction

Interpretation:

The air-standard cycles are to be sketched on PT diagrams for the Brayton cycle and also explain why a PT diagram would not be helpful for depicting power cycles involving liquid/vapor phase changes.

Concept Introduction:

Initially a general treatment is given of paths on a PT diagram for an ideal gas with constant heat capacities undergoing reversible polytropic processes. Equation 3.35c may be written as:

  P=KTδ/δ1

  lnP=lnK+δδ1lnT

  dPP=δδ1dTT

  dPdT=δδ1PT ......(A) Sign of dP/dT is that of δ1,i.e.,+

Special cases { δ=0dP/dT=0δ=1dP/dT=

Where P and T are constant

According to equation A,

  d2PdT2=δδ1(1TdPdTPT2)=δδ11T(δδ1PTPT)

  d2PdT2=δδ1PT2 .....eq B Sign of d2P/dT2 is that of δ,i.e.,+

Blurred answer
Students have asked these similar questions
Do question 9 please! Question 7 Is just there for reference!!
7) You are tasked with separating two proteins by ion exchange chromatography on a 30 cm long column with an inner diameter of 2 cm. The resin has a diameter of 100 μm and a void fraction of 0.3, and your mobile phase flows through the column at a rate of Q = 5 cm³/min. The Van Deemter coefficients A, B, and C have been determined to be 0.0228 cm, 0.0036 cm²/min, and 0.00053 min, respectively, for both proteins. Protein A elutes from the column with an average retention time of 27 min and standard deviation of 0.8 min. Protein B elutes from the column. with an average retention time of 33.8 min and standard deviation of 1.0. a) How many theoretical plates does the column contain? b) What flow rate (Q) will give you the maximum resolution? c) What is the minimum height of a theoretical plate for the system?
4) A fixed bed adsorption unit contains rigid (incompressible) silica particles with a diameter of 120 um and porosity of 0.3. The resin bed is 200 cm long and has a diameter of 15 cm. A protein solution is pumped into the column at a rate of 50 L/min, and the mobile phase has a viscosity of 1.2 CP. a) What is the pressure drop for this system (in bar)? b) What would be the pressure drop if the particle diameter were decreased to 30 μm?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The