![Foundation Design: Principles and Practices (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780133411898/9780133411898_largeCoverImage.gif)
Concept explainers
A 1.5 m square footing carries a column with a service load of 105 kN. It is founded at a depth of 2 m on a medium stiff clay with an undrained shear strength of 42 kPa, an overconsolidation ratio of 4, and a plasticity index of 35. The clay layer is 5 m thick and overlies a very stiff shale. Estimate the undrained settlement of the footing using the generalized elastic method with Christian and Carrier’s (1978) influence factors.
![Check Mark](/static/check-mark.png)
The undrained settlement of the footing using the generalized elastic method with Christian and Carriers (1978) influence factors.
Answer to Problem 8.1QPP
3.1 mm
Explanation of Solution
Given data:
Size of footing = 1.5m
Service load = 105kN
Depth = 2m
Undrained shear strength = 42kPa
Overconsolidation ratio = 4
Plasticity index = 35
Thickness of clay layer = 5m
Formula used:
The ratio of depth to width of footing is
The influence factor accounting for depth of footing from the following figure is
The aspect ratio of footing is
The relative thickness of compressible layer is
The influence factor accounting for shape of footing and compressible layer thickness from the above figure is
The average soil modulus over depth of compressible layer is
Substituting the values in the above equation,
The undrained settlement of the footing is
Conclusion:
The undrained settlement of the footing is 3.1 mm.
Want to see more full solutions like this?
Chapter 8 Solutions
Foundation Design: Principles and Practices (3rd Edition)
- Please provide a handwritten solution to the questionarrow_forwardWould impulse be zero since the particles have no external forces acting during the moment of contact? Please solve the entire problem.arrow_forwardBy using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way simply supported triangle slab shown in figure under a uniform load (q). Solve by using equilibrium method m marrow_forward
- The tension in cable BA is 10 kN. The questions will lead you toward determining the moment of the force acting from B to A about the x-axis. Hints: Pay attention to the orientation of the XYZ coordinate axes. 1000 mm A (400, 300, 0) mm 600 mm xarrow_forwardThe beam shown in the figure below is typical for a floor system in an existing building.It needs to carry a uniform live load of 260 lb/ft and a uniform dead weight of 400 lb/ft,including its own weight. The owner wants to add a partition weighing 7 kip (live load) asshown. Assuming the added partition as live load, is the beam section adequate to safelycarry the extra live load?PartitionStirrups15 ft 3 in.14 in.a. Determine the d e s i g n m o m e n t c a p a c i t y .b. D e t e r m i n e t h e f a c t o r e d a p p l i e d b e n d i n g m o m e n t .c. Is the beam safe and adequate for bending? Please explain your response.arrow_forward4. Use the influence function method to draw the influence line for the shear just to the right of A. Assume C is fixed, A is a roller, and B is a pin. 8 ft A 16 ft B 10 ft-arrow_forward
- 4-39. Draw the shear and moment diagrams for each of the three members of the frame. Assume the frame is pin connected at A, C, and D and there is a fixed joint at B. 4 m 50 kN 40 kN -1.5 m -2 m 1.5 B 15 kN/m 6 m Darrow_forwardAggregates from three sources having the properties shown in Table P5.41were blended at a ratio of 25:60:15 by weight. Determine the properties of theaggregate blend.arrow_forward7-7. Determine the equations of the elastic curve for the beam using the x and x, coordinates. Specify the beam's maximum deflection. El is constant. 22arrow_forward
- The cantilever beam shown below supports a uniform service (unfactored) dead load of 1.5 kip/ft plus its own self weight, plus two unknown concentrated service (unfactored) live loads, as shown. The concrete has f’c = 6,000 psi and the steel yield strength is 60 ksi. a. Determine the design moment capacity. b. Set up the applied bending moment capacity. c. Calculate maximum safe concentrated live load that the beam may carry.arrow_forwardThe circular slab of radius r supported by four columns, as shown in figure, is to be isotropically reinforced. Find the ultimate resisting moment (m) per linear meter required just to sustain a concentrated factored load of P kN applied at the center of the slab. Solve by using equilibrium m m Columnarrow_forwardBy using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a uniform load (q). Solve by using equilibrium method m marrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305635180/9781305635180_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305970939/9781305970939_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081550/9781305081550_smallCoverImage.gif)