MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, 9th Edition, [Instant Access], 2 terms (12 months)
MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, 9th Edition, [Instant Access], 2 terms (12 months)
9th Edition
ISBN: 9781305971257
Author: Braja M. Das; Khaled Sobhan
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
100%
Book Icon
Chapter 8, Problem 8.1P
To determine

Draw the flow net and calculate the seepage loss per meter length of the sheet pile.

Expert Solution & Answer
Check Mark

Answer to Problem 8.1P

The seepage loss per meter length of the sheet pile is 77.76×102m3/m/day_.

Explanation of Solution

Given information:

The hydraulic conductivity of the permeable soil layer k is 4×104cm/sec.

The height of the water level H1 is 6 m.

The height of the water level H2 is 1.5 m.

The depth of permeable layer up to the end of sheet pile D is 3 m.

The depth of permeable layer D1 is 6 m.

Calculation:

Draw the free body diagram of the flow net for the given values as in Figure (1).

MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, 9th Edition, [Instant Access], 2 terms (12 months), Chapter 8, Problem 8.1P

Refer Figure 1.

Determine the head difference between the upstream and downstream using the relation.

H=H1H2

Substitute 6 m for H1 and 1.5 m for H2.

H=61.5=4.5m

Determine the seepage loss per meter length of the sheet pile using the relation.

q=kHNfNd

Here, Nf is the number of flow lines and Nd is the number of potential drops.

Substitute 4×104cm/sec for k, 4.5 m for H, 4 for Nf, and 8 for Nd.

q=4×104cm/sec×1m100cm×86,400sec1day×4.5×48=77.76×102m3/m/day

Therefore, the seepage loss per meter length of the sheet pile is 77.76×102m3/m/day_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2P -1.8 m- -1.8 m- -B Wo P -1.8 m- C
Part F: Progressive activity week 7 Q.F1 Pick the rural location of a project site in Victoria, and its catchment area-not bigger than 25 sqkm, and given the below information, determine the rainfall intensity for ARI 5, 50, 100 year storm event. Show all the details of the procedure. Each student must propose different length of streams and elevations. Use fig below as a sample only. Pt. E-nt 950 200 P: D-40, PC-92.0 300m 300m 000m PL.-02.0 500m HI-MAGO PLA-M 91.00 To be deemed satisfactory the solution must include: Q.F1.1.Choice of catchment location Q.F1.2. A sketch displaying length of stream and elevation Q.F1.3. Catchment's IFD obtained from the Buro of Metheorology for specified ARI Q.F1.4.Calculation of the time of concentration-this must include a detailed determination of the equivalent slope. Q.F1.5.Use must be made of the Bransby-Williams method for the determination of the equivalent slope. Q.F1.6.The graphical display of the estimation of intensities for ARI 5,50, 100…
I need help finding: -The axial deflection pipe in inches. -The lateral deflection of the beam in inches -The total deflection of the beam like structure in inches ?

Chapter 8 Solutions

MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, 9th Edition, [Instant Access], 2 terms (12 months)

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning