Essentials Of Statistics
Essentials Of Statistics
4th Edition
ISBN: 9781305093836
Author: HEALEY, Joseph F.
Publisher: Cengage Learning,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 8.1P

For each of the following, test for the significance of the difference in sample statistics using the five- step model. (HINT: Remember to solve Formula 8.4 before attempting to solve Formula 8.2. Also, in Formula 8.4, perform the mathematical operations in the proper sequence. First square each sample standard deviation, then divide by the proper N , add the resultant values, and then find the square root of the sum.)

a.

Sample 1 Sample 2
X ¯ 1 = 72.5 X ¯ 2 = 76.0
s 1 = 14.3 s 2 = 10.2
N 1 = 136 N 2 = 257

b.

Sample 1 Sample 2
X ¯ 1 = 107 X ¯ 2 = 103
s 1 = 14 s 2 = 17
N 1 = 175 N 2 = 200
Expert Solution
Check Mark
To determine

(a)

To find:

The significant difference in the sample statistics for the two samples.

Answer to Problem 8.1P

Solution:

There is a significant difference between the sample statistics of two samples.

Explanation of Solution

Given:

The sample statistics is given in the table below,

Sample 1 Sample 2
X¯1=72.5 X¯2=76.0
s1=14.3 s2=10.2
N1=136 N2=257

The five step model for hypothesis testing:

Step 1. Making assumptions and meeting test requirements.

Step 2. Stating the null hypothesis.

Step 3. Selecting the sampling distribution and establishing the critical region.

Step 4. Computing test statistics.

Step 5. Making a decision and interpreting the results of the test.

Formula used:

The formula to calculate the sampling distribution of the differences in sample means is given by,

Z(obtained)=(X¯1X¯2)(μ1μ2)σX¯X¯

Where, X¯1 and X¯2 is the mean of first and second sample respectively,

μ1 and μ2 is the mean of first and second population respectively,

σX¯X¯ is the standard deviation and the formula to calculate σX¯X¯ is given by,

σX¯X¯=s21N11+s22N21

Where, N1 and N2 is the number of first and second population respectively.

Calculation:

From the given information, the sample size of the first sample is 136, the sample size of the second sample is 257, the sample mean of the first sample is 72.5, the sample mean of the second sample is 76.0, the sample standard deviation of the first sample is 14.3, and the sample standard deviation of the second sample is 10.2.

As the significant difference in the sample statistics is to be determined, a two tailed test is applied.

Follow the steps for two-sample testing as,

Step 1. Making assumptions and meeting test requirements.

Model:

Consider independent random samples.

Level of measurement is interval ratio.

Sampling distribution is Normal.

Step 2. State the null hypothesis.

The statement of the null hypothesis is that there is no significant difference in the sample s of the population. Thus, the null and the alternative hypotheses are,

H0:μ1=μ2

H1:μ1μ2

Step 3. Selecting the sampling distribution and establishing the critical region.

Since, the sample size is large, Z distribution can be used.

Thus, the sampling distribution is Z distribution.

The level of significance is,

α=0.05

Area of critical region is,

Z(critical)=±1.96

Step 4. Compute test statistics.

The population standard deviations are unknown.

The formula to calculate σX¯X¯ is given by,

σX¯X¯=s21N11+s22N21

Substitute 14.3 for s1, 10.2 for s2, 136 for N1, and 257 for N2 in the above mentioned formula,

σX¯X¯=(14.3)21361+(10.2)22571=204.49135+104.04256=1.5147+0.4064=1.9211

Simplify further,

σX¯X¯=1.38611.39(1)

The sampling distribution of the differences in sample means is given by,

Z(obtained)=(X¯1X¯2)(μ1μ2)σX¯X¯

Under the null hypotheses,

μ1μ2=0

Substitute 0 for μ1μ2 in the above mentioned formula,

Z(obtained)=(X¯1X¯2)σX¯X¯

From equation (1) substitute 72.5 for X¯1, 76.0 for X¯2, and 1.39 for σX¯X¯ in the above mentioned formula,

Z(obtained)=(72.576.0)1.39=3.51.39=2.52

Thus, the obtained Z value is 2.52.

Step 5. Making a decision and interpreting the results of the test.

Compare the test statistic with the critical Z value. The Z score falls in the rejection region. This implies that there is a significant difference between the two samples. The decision to reject the null hypothesis has only 0.05 probability of being incorrect.

Conclusion:

Therefore, there is a significant difference between the sample statistics of two samples.

Expert Solution
Check Mark
To determine

(b)

To find:

The significant difference in the sample statistics of the two samples.

Answer to Problem 8.1P

Solution:

There is a significant difference between the sample statistics of two samples.

Explanation of Solution

Given:

The sample statistics is given in the table below,

Sample 1 Sample 2
X¯1=107 X¯2=103
s1=14 s2=17
N1=175 N2=200

The five step model for hypothesis testing:

Step 1. Making assumptions and meeting test requirements.

Step 2. Stating the null hypothesis.

Step 3. Selecting the sampling distribution and establishing the critical region.

Step 4. Computing test statistics.

Step 5. Making a decision and interpreting the results of the test.

Formula used:

The formula to calculate the sampling distribution of the differences in sample means is given by,

Z(obtained)=(X¯1X¯2)(μ1μ2)σX¯X¯

Where, X¯1 and X¯2 is the mean of first and second sample respectively,

μ1 and μ2 is the mean of first and second population respectively,

σX¯X¯ is the standard deviation and the formula to calculate σX¯X¯ is given by,

σX¯X¯=s21N11+s22N21

Where, N1 and N2 is the number of first and second population respectively.

Calculation:

From the given information, the sample size of the first sample is 175, the sample size of the second sample is 200, the sample mean of the first sample is 107, the sample mean of the second sample is 103, the sample standard deviation of the first sample is 14, and the sample standard deviation of the second sample is 17.

As the significant difference in the sample statistics is to be determined, a two tailed test is applied.

Follow the steps for two-sample testing as,

Step 1. Making assumptions and meeting test requirements.

Model:

Consider independent random samples.

Level of measurement is interval ratio.

Sampling distribution is Normal.

Step 2. State the null hypothesis.

The statement of the null hypothesis is that there is no significant difference in the sample s of the population. Thus, the null and the alternative hypotheses are,

H0:μ1=μ2

H1:μ1μ2

Step 3. Selecting the sampling distribution and establishing the critical region.

Since, the sample size is large, Z distribution can be used.

Thus, the sampling distribution is Z distribution.

The level of significance is,

α=0.05

Area of critical region is,

Z(critical)=±1.96

Step 4. Compute test statistics.

The population standard deviations are unknown.

The formula to calculate σX¯X¯ is given by,

σX¯X¯=s21N11+s22N21

Substitute 14 for s1, 17 for s2, 175 for N1, and 200 for N2 in the above mentioned formula,

σX¯X¯=(14)21751+(17)22001=196174+289199=1.1264+1.4523=2.5787

Simplify further,

σX¯X¯=1.60581.61(2)

The sampling distribution of the differences in sample means is given by,

Z(obtained)=(X¯1X¯2)(μ1μ2)σX¯X¯

Under the null hypotheses,

μ1μ2=0

Substitute 0 for μ1μ2 in the above mentioned formula,

Z(obtained)=(X¯1X¯2)σX¯X¯

From equation (2) substitute 107 for X¯1, 103 for X¯2, and 1.61 for σX¯X¯ in the above mentioned formula,

Z(obtained)=(107103)1.61=41.61=2.48

Thus, the obtained Z value is 2.48.

Step 5. Making a decision and interpreting the results of the test.

Compare the test statistic with the critical Z value. The Z score falls in the rejection region. This implies that there is a significant difference between the two samples. The decision to reject the null hypothesis has only 0.05 probability of being incorrect.

Conclusion:

Therefore, there is a significant difference between the sample statistics of two samples.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question 2: When John started his first job, his first end-of-year salary was $82,500. In the following years, he received salary raises as shown in the following table. Fill the Table: Fill the following table showing his end-of-year salary for each year. I have already provided the end-of-year salaries for the first three years. Calculate the end-of-year salaries for the remaining years using Excel. (If you Excel answer for the top 3 cells is not the same as the one in the following table, your formula / approach is incorrect) (2 points) Geometric Mean of Salary Raises: Calculate the geometric mean of the salary raises using the percentage figures provided in the second column named “% Raise”. (The geometric mean for this calculation should be nearly identical to the arithmetic mean. If your answer deviates significantly from the mean, it's likely incorrect. 2 points) Hint for the first part of question 2: To assist you with filling out the table in the first part of the question,…
Consider a sample with data values of 27, 25, 20, 15, 30, 34, 28, and 25. Compute the range, interquartile range, variance, and standard deviation (to a maximum of 2 decimals, if decimals are necessary). Range   Interquartile range   Variance   Standard deviation
Perform a Step by step  following tests in Microsoft Excel. Each of the following is 0.5 points, with a total of 6 points. Provide your answers in the following table. Median Standard Deviation Minimum Maximum Range 1st Quartile 2nd Quartile 3rd Quartile Skewness; provide a one sentence explanation of what does the skewness value indicates Kurtosis; provide a one sentence explanation of what does the kurtosis value indicates Make a labelled histogram; no point awarded if it is not labelled Make a labelled boxplot; no point awarded if it is not labelled   Data 27 30 22 25 24 22 20 28 20 26 21 23 24 20 28 30 20 28 29 30 21 26 29 25 26 25 20 30 26 28 25 21 22 27 27 24 26 22 29 28 30 22 22 22 30 21 21 30 26 20
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Statistics 4.1 Introduction to Inferential Statistics; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=QLo4TEvBvK4;License: Standard YouTube License, CC-BY