Concept explainers
Write Lewis structures that obey the octet rule (duet rule for H) for each of the following molecules. Carbon is the central atom in CH4, nitrogen is the central atom in NH3, and oxygen is the central atom in H2O.
a. F2
b. O2
c. CO
d. CH4
e. NH3
f. H2O
g. HF
(a)
Interpretation: The Lewis structure is to be drawn for the given molecules.
Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists.
The octet rule states that atoms or molecules gain or lose electrons to get the electronic configuration of nearest noble gas.
To determine: The Lewis structure of the molecule
Answer to Problem 81E
Explanation of Solution
The first step in determining the Lewis structure is to determine the number of valence electrons. The atomic number of fluorine
The valence electron of fluorine is 7
The fluorine molecule
The skeletal structure of
Each fluorine atom requires one electron to complete the octet. Hence, the mutual sharing of two electrons takes place. The 12 valence electrons present are placed as lone pairs in such a way that each atom gets three lone pairs.
The Lewis structure of
Figure 1
(b)
Interpretation: The Lewis structure is to be drawn for the given molecules.
Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists.
The octet rule states that atoms or molecules gain or lose electrons to get the electronic configuration of nearest noble gas.
To determine: The Lewis structure of the molecule
Answer to Problem 81E
Explanation of Solution
The first step in determining the Lewis structure is to determine the number of valence electrons. The atomic number of oxygen
The valence electron of oxygen is 6
The oxygen molecule
The skeletal structure of
Each oxygen atom requires two electrons to complete the octet. Hence, the mutual sharing of four electrons takes place. The 8 valence electrons present are placed as lone pairs in such a way that each atom gets two lone pairs.
The Lewis structure of
Figure 2
(c)
Interpretation: The Lewis structure is to be drawn for the given molecules.
Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists.
The octet rule states that atoms or molecules gain or lose electrons to get the electronic configuration of nearest noble gas.
To determine: The Lewis structure of the molecule
Answer to Problem 81E
Explanation of Solution
The first step in determining the Lewis structure is to determine the number of valence electrons. The atomic number of oxygen is 8 and its electronic configuration is,
The valence electron of oxygen is 6
The atomic number of carbon
The valence electron of carbon is 4
The molecule
The skeletal structure of
Each oxygen atom requires two electrons to complete the octet whereas carbon requires four electrons to complete the octet. Hence, the mutual sharing of six electrons takes place which is represented by triple bond. The 4 valence electrons left are placed as lone pairs in such a way that each atom gets one lone pair.
The Lewis structure of
Figure 3
(d)
Interpretation: The Lewis structure is to be drawn for the given molecules.
Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists.
The octet rule states that atoms or molecules gain or lose electrons to get the electronic configuration of nearest noble gas.
To determine: The Lewis structure of the molecule
Answer to Problem 81E
Explanation of Solution
The first step in determining the Lewis structure is to determine the number of valence electrons. The atomic number of carbon is 6 and its electronic configuration is,
The valence electron of carbon is 4
The atomic number of hydrogen
The valence electron of hydrogen is 1
The molecule
The skeletal structure of
Figure 4
Each hydrogen atom requires one electron to complete the octet whereas carbon requires four electrons to complete the octet. In the molecule
The Lewis structure of
Figure 5
(e)
Interpretation: The Lewis structure is to be drawn for the given molecules.
Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists.
The octet rule states that atoms or molecules gain or lose electrons to get the electronic configuration of nearest noble gas.
To determine: The Lewis structure of the molecule
Answer to Problem 81E
Explanation of Solution
The first step in determining the Lewis structure is to determine the number of valence electrons. The atomic number of nitrogen
The valence electron of nitrogen is 5
The atomic number of hydrogen is 1 and its electronic configuration is,
The valence electron of hydrogen is 1
The molecule
The skeletal structure of
Figure 6
Each hydrogen atom requires one electron to complete the octet whereas nitrogen requires three electrons to complete the octet. In the molecule
The Lewis structure of
Figure 7
(f)
Interpretation: The Lewis structure is to be drawn for the given molecules.
Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists.
The octet rule states that atoms or molecules gain or lose electrons to get the electronic configuration of nearest noble gas.
To determine: The Lewis structure of the molecule
Answer to Problem 81E
Explanation of Solution
The first step in determining the Lewis structure is to determine the number of valence electrons. The atomic number of oxygen is 8 and its electronic configuration is,
The valence electron of oxygen is 6
The atomic number of hydrogen is 1 and its electronic configuration is,
The valence electron of hydrogen is 1
The molecule
The skeletal structure of
Figure 8
Each hydrogen atom requires one electron to complete the octet whereas oxygen requires two electrons to complete the octet. In the molecule
The Lewis structure of
Figure 9
(g)
Interpretation: The Lewis structure is to be drawn for the given molecules.
Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists.
The octet rule states that atoms or molecules gain or lose electrons to get the electronic configuration of nearest noble gas.
To determine: The Lewis structure of the molecule
Answer to Problem 81E
Explanation of Solution
The first step in determining the Lewis structure is to determine the number of valence electrons. The atomic number of fluorine is 9 and its electronic configuration is,
The valence electron of fluorine is 7
The atomic number of hydrogen is 1 and its electronic configuration is,
The valence electron of hydrogen is 1
The molecule
The skeletal structure of
Each hydrogen atom requires one electron to complete the octet whereas fluorine requires one electron to complete the octet. Hence, the mutual sharing of eight electrons takes place.
The Lewis structure of
Figure 10
The Lewis dot structure is drawn to satisfy the octets of atoms. The octet rule states that elements gain or lose electrons to get the nearest noble gas configuration.
Want to see more full solutions like this?
Chapter 8 Solutions
Lab Manual For Zumdahl/zumdahl's Chemistry, 9th
- 3B: Convert the starting material into the chiral epoxytriol below. OH OH = OH OHarrow_forward3D: Convert the aromatic triketone to the 1,3,5-triethylcyclohexane shown below. ہوئےarrow_forwardIndicate how to find the energy difference between two levels in cm-1, knowing that its value is 2.5x10-25 joules.arrow_forward
- The gyromagnetic ratio (gamma) for 1H is 2.675x108 s-1 T-1. If the applied field is 1,409 T what will be the separation between nuclear energy levels?arrow_forwardChances Ad ~stract one 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $4th total Statistical pro 21 total 2 H A 2H 래 • 4H totul < 3°C-H werkest bund - abstraction he leads to then mo fac a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? рос 6 -વા J Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Clarrow_forwardWhat is the lone pair or charge that surrounds the nitrogen here to give it that negative charge?arrow_forward
- Last Name, Firs Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $ 4th total 21 total 4H total ZH 2H Statistical H < 3°C-H werkst - product bund abstraction here leads to the mo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Proclict 6 Number of Unique Mono-Chlorinated Products f Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary 'H H-Cl Waterfoxarrow_forward2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forwardI find the solution way too brief and unsatisfactory as it does not clearly explain the solution provided in the problem.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning