FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
4. A 2.5-MW internal combustion engine was brought to an altitude of 2000 m above sea level, considering both pressure and
temperature changes. The new power is_____ KW.
Steam power plant shown in figure isoperating at steady state with water as the workingfluid. The mass flow rate of the water circulatingthrough the components is 50 kg/s. Determine:a) thermal efficiency of the actual cycleb) Carnot cycle efficiency (justify anyassumptions you make in calculating ηCarnot)c) isentropic turbine efficiencyd) isentropic pump efficiencye) mass flow rate of the cooling water, in kg/s.f) rates of entropy production, each in kW/K, forthe turbine and steam generator
The adjacent figure provides steady-state operating data for a
vapor power plant using water as the working fluid. The mass
flow rate of water is 12 kg/s. The turbine and pump operate
adiabatically but not reversibly. Determine
a) the thermal efficiency.
b) the rates of heat transfer QQ and QQ000000, each in kW.
State
1
2
3
4
5
6
P
6 MPa
10 kPa
10 kPa
7.5 MPa
7 MPa
6 MPa
T(°C)
500
Sat.
40
550
h (kJ/kg)
3422.2
1633.3
191.83
199.4
167.57
3545.3
Knowledge Booster
Similar questions
- B. The Solana Generating Station near Gila Bend, AZ, is a concentrating solar power plant which collects thermal energy from the Sun via parabolic trough and feeds the thermal energy at a rate of 800 MW to a power cycle involving steam turbine generators. The cycle thermal efficiency, defined as the ratio of work output to the heat input, is 35%. Determine the power developed by the cycle, in MW. What is the work output, in GW-h for one year of steady-state and continuous operation? If the work is valued at $0.083/kW.h, what is the total dollar value of the work output?arrow_forwarda. Sketch the process on a P-V diagram b. Determine the rate of heat transfer from Boiler ( Qcv/m 1-2, in KJ/kg) c. Determine the rate of heat transfer from condenser ( Qcv/m 3-4, in KJ/Kg) d. Using the Clausius inequality to determine if the cycle is internally reversible, irreversible, or impossible. e. Determine the thermal efficiency of power cycle f. Determine the maximum thermal efficiency of power cycle ( Carnot Efficiency) g. Due to part (e & g) this cycle is___________ ? - internally reversible -internally irreversible -impossiblearrow_forwardThe figure below shows a vapor power cycle that provides process heat and produces power. The steam generator produces vapor at 500 lbf/in.², 800°F, at a rate of 8 x 105 lb/h. Eighty-eight percent of the steam expands through the turbine to 10 lbf/in.² and the remainder is directed to the heat exchanger. Saturated liquid exits the heat exchanger at 500 lbf/in.² and passes through a trap before entering the condenser at 10 lbf/in.² Saturated liquid exits the condenser at 10 lbf/in.² and is pumped to 500 lbf/in.² before entering the steam generator. The turbine and pump have isentropic efficiencies of 85% and 89%, respectively. For the process heat exchanger, assume the temperature at which heat transfer occurs is 465°F. Let To = 60°F. Po = 14.7 lbf/in.² Determine: Steam generator P₁=500 lbf/in.2 T₁ = 800°F 7p=89% Heat exchanger Pump (y) 1 minn (1-y) 77 = 85% Oprocess P4= 500 lbf/in.² saturated liquid P3= 10 lbf/in.² saturated liquid Turbine W₂ P₂=10 lbf/in.² 2 Condenser (a) the…arrow_forward
- The figure below shows a vapor power cycle that provides process heat and produces power. The steam generator produces vapor at 500 lbf/in.², 800°F, at a rate of 8 x 105 lb/h. Eighty-eight percent of the steam expands through the turbine to 10 lbf/in.² and the remainder is directed to the heat exchanger. Saturated liquid exits the heat exchanger at 500 lbf/in.2 and passes through a trap before entering the condenser at 10 lbf/in.² Saturated liquid exits the condenser at 10 lbf/in.2 and is pumped to 500 lbf/in.2 before entering the steam generator. The turbine and pump have isentropic efficiencies of 85% and 89%, respectively. For the process heat exchanger, assume the temperature at which heat transfer occurs is 465°F. Let To = 60°F, po = 14.7 lbf/in.² Determine: Steam generator 1₂=89% P-500lb/² 7₁ = 80XFF M₁ Heat exchanger Pamp B 1 (1-y) гибши 4-85% P= 500 lbfin? saturated liquid P=10 lbffin² saturated liquid Turbine W₁ Py=1002 me Condenser (a) the magnitude of the process heat…arrow_forwardSteam power plant shown in figure isoperating at steady state with water as the workingfluid. The mass flow rate of the water circulatingthrough the components is 50 kg/s. Determine: d) isentropic pump efficiencye) mass flow rate of the cooling water, in kg/s.f) rates of entropy production, each in kW/K, forthe turbine and steam generator.Include all the relevant governing equations andreferences to the tables you use. Be organizearrow_forward29. The work steady flow for an open system is 3.12 HP. During steady flow process, the pressure of the working substance drops from 200 psia to 20 psia and the speed increases from 200 to 1000 fps. The internal energy decreases 25 BTU/lbm and the specific volume increases from 1 ft^3/lbm to 8 ft^3/lbm. Sketch the pV diagram and computenthe heat in HP for 10 lbm/min of the substance.arrow_forward
- Describe the components of a steam power plant and demonstrate the process of it undergoes.arrow_forwardY7a please help me with the detailed solution and answerarrow_forwardThe figure below shows a vapor power cycle that provides process heat and produces power. The steam generator produces vapor at 500 lbf/in.2, 800°F, at a rate of 8 x 104 lb/h. Eighty-eight percent of the steam expands through the turbine to 10 lbf/in.2 and the remainder is directed to the heat exchanger. Saturated liquid exits the heat exchanger at 500 lbf/in.2 and passes through a trap before entering the condenser at 10 lbf/in.2Saturated liquid exits the condenser at 10 lbf/in.2 and is pumped to 500 lbf/in.2 before entering the steam generator. The turbine and pump have isentropic efficiencies of 85% and 89%, respectively. For the process heat exchanger, assume the temperature at which heat transfer occurs is 465°F. Let T0 = 60°F, p0 = 14.7 lbf/in.2 Determine:(a) the magnitude of the process heat production rate, in Btu/h.(b) the magnitude of the rate of exergy output, in Btu/h, as net work.(c) the rate of exergy transfer, in Btu/h, to the working fluid passing through the steam…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY