
Concept explainers
(a)
To find:
The significant difference between two sample proportions.

Answer to Problem 8.15P
Solution:
There is no significant difference between the sample statistics of two samples proportions and it is concluded that there is no sufficient evidence to conclude that male and females differ in favor of legalization of marijuana.
Explanation of Solution
Given:
The sample statistics is given in the table below,
Sample 1 (Males) |
Sample 2 (Females) |
Approach:
The five step model for hypothesis testing is,
Step 1. Making assumptions and meeting test requirements.
Step 2. Stating the null hypothesis.
Step 3. Selecting the sampling distribution and establishing the critical region.
Step 4. Computing test statistics.
Step 5. Making a decision and interpreting the results of the test.
Formula used:
The formula to calculate the sampling distribution of the differences in sample proportions of large samples is given by,
Where,
Where,
And
Calculation:
As the significant difference in the sample proportions is to be determined, a two tailed test is applied.
Follow the steps for two-sample testing as,
Step 1. Making assumptions and meeting test requirements.
Model:
Independent random samples.
Level of measurement is nominal.
Sampling distribution is Normal.
Step 2. Stating the null hypothesis.
The statement of the null hypothesis is that there is no significant difference in the samples of the population. Thus, the null and the alternative hypotheses are,
Step 3. Selecting the sampling distribution and establishing the critical region.
Since, the sample size is large, Z distribution can be used.
Thus, the sampling distribution is Z distribution.
The level of significance is,
Area of critical region is,
Step 4. Computing test statistics.
The population standard deviations are unknown.
The formula to calculate
Substitute 0.37 for
The formula to calculate
From equation
Simplify further,
The sampling distribution of the differences in sample proportion for large samples is given by,
Under null hypothesis,
Substitute 0 for
From equation
Thus, the obtained Z value is
Step 5. Making a decision and interpreting the results of the test.
Compare the test statistic with the critical
Conclusion:
Therefore, there is no significant difference between the sample statistics of two samples proportions and it is concluded that there is no sufficient evidence to conclude that male and females differ in favor of legalization of marijuana.
(b)
To find:
The significant difference between two sample proportions.

Answer to Problem 8.15P
Solution:
There is a significant difference between the sample statistics of two samples proportions and it is concluded that females strongly agree that kids are life’s greatest joy.
Explanation of Solution
Given:
The sample statistics is given in the table below,
Sample 1 (Males) |
Sample 2 (Females) |
Approach:
The five step model for hypothesis testing is,
Step 1. Making assumptions and meeting test requirements.
Step 2. Stating the null hypothesis.
Step 3. Selecting the sampling distribution and establishing the critical region.
Step 4. Computing test statistics.
Step 5. Making a decision and interpreting the results of the test.
Formula used:
The formula to calculate the sampling distribution of the differences in sample proportions of large samples is given by,
Where,
Where,
And
Calculation:
As the significant difference in the sample proportions is to be determined, a one tailed test is applied.
Follow the steps for two-sample testing as,
Step 1. Making assumptions and meeting test requirements.
Model:
Independent random samples.
Level of measurement is nominal.
Sampling distribution is Normal.
Step 2. Stating the null hypothesis.
The statement of the null hypothesis is that there is no significant difference in the samples of the population. Thus, the null and the alternative hypotheses are,
Step 3. Selecting the sampling distribution and establishing the critical region.
Since, the sample size is large, Z distribution can be used.
Thus, the sampling distribution is Z distribution.
The level of significance is,
Area of critical region is,
Step 4. Computing test statistics.
The population standard deviations are unknown.
The formula to calculate
Substitute 0.47 for
The formula to calculate
From equation
Simplify further,
The sampling distribution of the differences in sample proportion for large samples is given by,
Under null hypothesis,
Substitute 0 for
From equation
Thus, the obtained Z value is
Step 5. Making a decision and interpreting the results of the test.
Compare the test statistic with the critical
Conclusion:
Therefore, there is a significant difference between the sample statistics of two samples proportions and it is concluded that females strongly agree that kids are life’s greatest joy.
(c)
To find:
The significant difference between two sample proportions.

Answer to Problem 8.15P
Solution:
There is a significant difference between the sample statistics of two samples proportions and it is concluded that males and females differ in opinion for voting Obama in 2012.
Explanation of Solution
Given:
The sample statistics is given in the table below,
Sample 1 (Males) |
Sample 2 (Females) |
Approach:
The five step model for hypothesis testing is,
Step 1. Making assumptions and meeting test requirements.
Step 2. Stating the null hypothesis.
Step 3. Selecting the sampling distribution and establishing the critical region.
Step 4. Computing test statistics.
Step 5. Making a decision and interpreting the results of the test.
Formula used:
The formula to calculate the sampling distribution of the differences in sample proportions of large samples is given by,
Where,
Where,
And
Calculation:
As the significant difference in the sample proportions is to be determined, a two tailed test is applied.
Follow the steps for two-sample testing as,
Step 1. Making assumptions and meeting test requirements.
Model:
Independent random samples.
Level of measurement is nominal.
Sampling distribution is Normal.
Step 2. Stating the null hypothesis.
The statement of the null hypothesis is that there is no significant difference in the samples of the population. Thus, the null and the alternative hypotheses are,
Step 3. Selecting the sampling distribution and establishing the critical region.
Since, the sample size is large, Z distribution can be used.
Thus, the sampling distribution is Z distribution.
The level of significance is,
Area of critical region is,
Step 4. Computing test statistics.
The population standard deviations are unknown.
The formula to calculate
Substitute 0.45 for
The formula to calculate
From equation
Simplify further,
The sampling distribution of the differences in sample proportion for large samples is given by,
Under null hypothesis,
Substitute 0 for
From equation
Thus, the obtained Z value is
Step 5. Making a decision and interpreting the results of the test.
Compare the test statistic with the critical
Conclusion:
Therefore, there is a significant difference between the sample statistics of two samples proportions and it is concluded that males and females differ in opinion for voting Obama in 2012.
(d)
To find:
The significant difference in the sample statistics of the two samples.

Answer to Problem 8.15P
Solution:
There is a significant difference between the sample statistics of two samples and it is concluded that males spent more hours at e-mail each week.
Explanation of Solution
Given:
The sample statistics is given in the table below,
Sample 1 (Males) |
Sample 2 (Females) |
Approach:
The five step model for hypothesis testing is,
Step 1. Making assumptions and meeting test requirements.
Step 2. Stating the null hypothesis.
Step 3. Selecting the sampling distribution and establishing the critical region.
Step 4. Computing test statistics.
Step 5. Making a decision and interpreting the results of the test.
Formula used:
The formula to calculate the sampling distribution of the differences in sample means is given by,
Where,
Where,
Calculation:
As the significant difference in the sample statistics is to be determined, a one tailed test is applied.
Follow the steps for two-sample testing as,
Step 1. Making assumptions and meeting test requirements.
Model:
Independent random samples.
Level of measurement is interval ratio.
Sampling distribution is Normal.
Step 2. Stating the null hypothesis.
The statement of the null hypothesis is that there is no significant difference in the sample s of the population. Thus, the null and the alternative hypotheses are,
Step 3. Selecting the sampling distribution and establishing the critical region.
Since, the sample size is large, Z distribution can be used.
Thus, the sampling distribution is Z distribution.
The level of significance is,
Area of critical region is,
Step 4. Computing test statistics.
The population standard deviations are unknown.
The formula to calculate
Substitute 7.21 for
Simplify further,
The sampling distribution of the differences in sample means is given by,
Under the null hypotheses,
Substitute
From equation
Thus, the obtained Z value is
Step 5. Making a decision and interpreting the results of the test.
Compare the test statistic with the critical
Conclusion:
Therefore, there is a significant difference between the sample statistics of two samples and it is concluded that males spent more hours at e-mail each week.
(e)
To find:
The significant difference in the sample statistics of the two samples.

Answer to Problem 8.15P
Solution:
There is a significant difference between the sample statistics of two samples and it is concluded that male has less average rate of church attendance compared to females.
Explanation of Solution
Given:
The sample statistics is given in the table below,
Sample 1 (Males) |
Sample 2 (Females) |
Approach:
The five step model for hypothesis testing is,
Step 1. Making assumptions and meeting test requirements.
Step 2. Stating the null hypothesis.
Step 3. Selecting the sampling distribution and establishing the critical region.
Step 4. Computing test statistics.
Step 5. Making a decision and interpreting the results of the test.
Formula used:
The formula to calculate the sampling distribution of the differences in sample means is given by,
Where,
Where,
Calculation:
As the significant difference in the sample statistics is to be determined, a one tailed test is applied.
Follow the steps for two-sample testing as,
Step 1. Making assumptions and meeting test requirements.
Model:
Independent random samples.
Level of measurement is interval ratio.
Sampling distribution is Normal.
Step 2. Stating the null hypothesis.
The statement of the null hypothesis is that there is no significant difference in the sample s of the population. Thus, the null and the alternative hypotheses are,
Step 3. Selecting the sampling distribution and establishing the critical region.
Since, the sample size is large, Z distribution can be used.
Thus, the sampling distribution is Z distribution.
The level of significance is,
Area of critical region is,
Step 4. Computing test statistics.
The population standard deviations are unknown.
The formula to calculate
Substitute 2.60 for
Simplify further,
The sampling distribution of the differences in sample means is given by,
Under the null hypotheses,
Substitute
From equation
Thus, the obtained Z value is
Step 5. Making a decision and interpreting the results of the test.
Compare the test statistic with the critical
Conclusion:
Therefore, there is a significant difference between the sample statistics of two samples and it is concluded that male has less average rate of church attendance compared to females.
(f)
To find:
The significant difference in the sample statistics of the two samples.

Answer to Problem 8.15P
Solution:
There is a significant difference between the sample statistics of two samples and it is concluded that males prefer lesser number of children than females.
Explanation of Solution
Given:
The sample statistics is given in the table below,
Sample 1 (Males) |
Sample 2 (Females) |
Approach:
The five step model for hypothesis testing is,
Step 1. Making assumptions and meeting test requirements.
Step 2. Stating the null hypothesis.
Step 3. Selecting the sampling distribution and establishing the critical region.
Step 4. Computing test statistics.
Step 5. Making a decision and interpreting the results of the test.
Formula used:
The formula to calculate the sampling distribution of the differences in sample means is given by,
Where,
Where,
Calculation:
As the significant difference in the sample statistics is to be determined, a one tailed test is applied.
Follow the steps for two-sample testing as,
Step 1. Making assumptions and meeting test requirements.
Model:
Independent random samples.
Level of measurement is interval ratio.
Sampling distribution is Normal.
Step 2. Stating the null hypothesis.
The statement of the null hypothesis is that there is no significant difference in the sample s of the population. Thus, the null and the alternative hypotheses are,
Step 3. Selecting the sampling distribution and establishing the critical region.
Since, the sample size is large, Z distribution can be used.
Thus, the sampling distribution is Z distribution.
The level of significance is,
Area of critical region is,
Step 4. Computing test statistics.
The population standard deviations are unknown.
The formula to calculate
Substitute 1.50 for
Simplify further,
The sampling distribution of the differences in sample means is given by,
Under the null hypotheses,
Substitute
From equation
Thus, the obtained Z value is
Step 5. Making a decision and interpreting the results of the test.
Compare the test statistic with the critical
Conclusion:
Therefore, there is a significant difference between the sample statistics of two samples and it is concluded that males prefer lesser number of children than females.
Want to see more full solutions like this?
Chapter 8 Solutions
Essentials of Statistics: A Tool for Social Research - With SPSS DVD
- If, based on a sample size of 900,a political candidate finds that 509people would vote for him in a two-person race, what is the 95%confidence interval for his expected proportion of the vote? Would he be confident of winning based on this poll? Question content area bottom Part 1 A 9595% confidence interval for his expected proportion of the vote is (Use ascending order. Round to four decimal places as needed.)arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forwardA population that is uniformly distributed between a=0and b=10 is given in sample sizes 50( ), 100( ), 250( ), and 500( ). Find the sample mean and the sample standard deviations for the given data. Compare your results to the average of means for a sample of size 10, and use the empirical rules to analyze the sampling error. For each sample, also find the standard error of the mean using formula given below. Standard Error of the Mean =sigma/Root Complete the following table with the results from the sampling experiment. (Round to four decimal places as needed.) Sample Size Average of 8 Sample Means Standard Deviation of 8 Sample Means Standard Error 50 100 250 500arrow_forward
- A survey of 250250 young professionals found that two dash thirdstwo-thirds of them use their cell phones primarily for e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for e-mail is less than 0.720.72? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is left bracket nothing comma nothing right bracket0.60820.6082, 0.72510.7251. As 0.720.72 is within the limits of the confidence interval, we cannot conclude that the population proportion is less than 0.720.72. (Use ascending order. Round to four decimal places as needed.)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardA survey of 250 young professionals found that two-thirds of them use their cell phones primarily for e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for e-mail is less than 0.72? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is [ ], [ ] As 0.72 is ▼ above the upper limit within the limits below the lower limit of the confidence interval, we ▼ can cannot conclude that the population proportion is less than 0.72. (Use ascending order. Round to four decimal places as needed.)arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- Questions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forwardFrom a sample of 26 graduate students, the mean number of months of work experience prior to entering an MBA program was 34.67. The national standard deviation is known to be18 months. What is a 90% confidence interval for the population mean? Question content area bottom Part 1 A 9090% confidence interval for the population mean is left bracket nothing comma nothing right bracketenter your response here,enter your response here. (Use ascending order. Round to two decimal places as needed.)arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL


