FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
3. An adiabatic compressor takes argon from 100 kPa, 300 K to 2000 kPa. The compressor
efficiency is 80%.
(a) Find the outlet temperature (K) and the work (kJ/kg)
(b) Find the entropy generation (kJ/kg-K)
Steam to a turbine at a mass flow rate of 1.4 kg/s, 700 kPa pressure and 400 °C
enters the temperature. Steam at 100 kPa pressure and 1.4 m3/kg specific volume
exits the turbine. Heat transfer from turbine to environment 50 kW, with turbine
Since the boundary temperature between the environment is 70 °C,
a) Find the power produced by the turbine, entropy produced in the turbine and isentropic efficiency of the turbine.
Note: The changes in kinetic and potential energies will be neglected and
T (K) = 273 + °C will be taken.
one kg of air is compressed in a cylinder according to the law PV^1.3= constant. If intital temperature is 100°C amd compression ratio is 15, find the work done and change in entropy of air.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A steam is expanded through a nozzle and the enthalphy drop per kg of steam from the initial pressure to the final pressure is 70 kJ. Neglecting the friction, find the velocity of discharge.arrow_forwardA steam turbine has an inlet of 2 kg/s water at 1000 kPa, 350 °C and velocity of 15 m/s. The exit is at 100 kPa, 150 °C and very low velocity (assume zero). Find the specific work (kJ/kg) and the power (kW) produced.arrow_forwardThere are required 2000 kW of compressor power to handle air adiabaticallyfrom 1 atmosphere, 27 oC, to 305 kPaa. The initial air velocity is 20 m/s and the finalvelocity is 85 m/s. a) If the compression is isentropic, find the compressor capacity, inm3/s. b) If the compression process is irreversible adiabatic to a temperature of 160 oC,with the capacity found in c), determine the compressor power input, in Hp.arrow_forward
- The turbine section in a jet engine receives gas (assume air) at 1200 K, 800 kPa with an ambient atmosphere at 80 kPa. The turbine is followed by a nozzle open to the atmosphere and all the turbine work drives a compressor receiving air at 85 kPa, 270 K with the same flow rate. Find the turbine exit pressure P₂ so the nozzle has an exit velocity of 800 m/s.arrow_forwardThe pressure and temperature entering the turbine is 1800kpaa and 380oC. The temperature leaving the turbine is 20kpa. The quality of steams entering the condenser is 90%. Find the turbine work in kJ/kg.arrow_forwardSteam enters a turbine at 3500 kPa, 500 C and velocity of 300 m/s and exit at 15 kPa and 25 C. Heat loss is 15 kw. The mass flow rate is 10 kg/s. Find the work output.arrow_forward
- An adiabatic turbine has an efficiency of 90%. If air is compressed from 1100kpa and 227 degree Celsius to 101kpa. Find the work done and final temperature. Sketch process on T-S diagram.arrow_forwardThermodynamics sketch and label the turbine. Sketch and label the process on a T-s diagram also mentions all numbers on the process please. Thanks 7.56 A steam turbine has an inlet of 2 kg/s water at 1000 kPa, 400°C with velocity of 15 m/s. The exit is at 100 kPa, 150°C and very low velocity. Find the power produced and the rate of entropy generation.arrow_forwardYou have a nozzle with steam inlet at 350 deg C, 0.85 MPa and 12m/s. The stream exits at 0.4 MPa and 250 m/s. If stream 1 area is 750cm2, what is exit stream area and temperature?arrow_forward
- The power of a steam turbine in a thermal power plant is 60 MW. Water vapor enters the turbine at 3MPa pressure, 4000C temperature and 50 m / s speed, 10 kPa pressure, 0.9 dry degree and 200 m / s speed leaves the turbine. Considering the turbine as adiabatic; 1-Find the mass flow of steam 2-Find the turbine outlet cross-sectional area, its ratio (A2 / A1) to the inlet cross-sectional area.arrow_forwardA condenser (heat exchanger) brings 1 kg/s water flow at 10 kPa quality 95% to saturated liquid at 10 kPa. The cooling is done by lake water at 20 degree Celsius that returns to the lake at 30 degree Celsius. For an insulated condenser, find the flow rate of cooling water.arrow_forwardPlease don't provide handwritten solution .....arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License