FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
78 kg of water vapor is found as saturated vapor at 650 kPa pressure in a cube-shaped container with a fixed volume. The cube lost heat and its pressure dropped to 325 kPa. Since the environmental conditions are 100 kPa 25 ºC, find the exergy change of the steam in the first and the last state, the exergy change in the steam, the exergy destruction and the second-law efficiency for this process change.
A fraction of some power to a motor (1), 2 kW, is turned
into heat transfer at 500 K (2) and then it dissipates in the
ambient at 300 K (3). Give the rates of exergy along the
process 1-2-3.
i need the answer quickly
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- We need a steam turbine is to generate 10 MW of power. The feed steam is 200 bar at 500 C. The exhaust is a saturated mixture at 1 bar at 110 C. Calculate the flow rate of steam required.arrow_forwardHelium at 660 K expands in a turbine to 420 K during which 77 kJ/kg of heat was lost to the surroundings which are at 27 °c. The pressure across the turbine was 6.0, What is the isentropic efficiency "%"?arrow_forwardheat engine used a steam as working fluid has 3 kg/s and initial the steam undergoes to expansion process is 8 bar, dryness fraction ( 13) percent , and the expansion follows the law (PV¹.¹-C), down to a pressure of 0.3 bar. Calculate the change of entropy of steam during the process.arrow_forward
- 9 In a constant temperature, transferred to the working fluid at 80F. What is the change of entropy of the working fluid, KJ/kg-K? closed system process, 120 BTU of heat is 10 1ne in -rease of certain is 141 KJ/ka when the gasarrow_forward2000 kg cast iron hoisin at 350 degree Celsius is quenched in 4000 kg of water at 15 degree Celsius. Find the amount of heat transferred to the water bath, entropy change for water and cast iron, use the entropy generation to prove that the entire system does not violate the second law of thermodynamics. Water specific heat of 4.18kj/kg.k, cast iron specific heat of 0.42kj/kg.karrow_forwardI was getting 35.4 but correct answer is 0.228. please help me to solve itarrow_forward
- A steam turbine receives 0.52 MPa of steam at 300 C. Then expand in an irreversible adiabatic process to a pressure of 0.012 MPa. If the exhaust steam is dry and saturated, calculate:a. The work of an irreversible processb. The efficiency of the process.arrow_forwardGiven 0.603MW electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of.the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). a) Calculate the total rate of entropy production b) Calculate the total rate of exergy destruction (W). The dead state temperature is 293.2 K and pressure is 1 bar. c) Calculate the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of the problem if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg.arrow_forwardSteam at 5.2 MPa, 4000C expands in a Rankine turbine to 0.036MPa. For 136 kg/s of steam, determine the work, the thermal efficiency, and the steam rate (a) fot the cycle(b) for the turbine, (c) for an actual turbine with the same specifications, the brake steam rate is 4.80 kg/kwh ang the driven electric generator has an efficiency of 93%, Find brake thermal efficiency , brake engine efficiency, combined work, and quality or temperature of exhaust steam. Don't answer the given problem, just give me the schematic diagram and T-S diagram of the given problemarrow_forward
- 1arrow_forwardProblem 4: In the pump of a steam power plant, saturated liquid at 75 kPa pressure is compressed to 3 MPa pressure. Since the adiabatic efficiency of the pump is 85%, find the work consumed by the pump.arrow_forwardExample 8.5. Heat flows from a hot reservoir at 800 K to another reservoir at 250 K. H entropy change of the overall process is 4.25 kJ/K, make calculations for the heat flowinger of the high temperature reservoir.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License