Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.12P
(a)
To determine
To Calculate: The worker intake.
To determine
To Calculate: The effective dose to the worker.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the V•O2max of people tends to declineafter age 30 by about 9% per decade for sedentary individuals,but it declines less than 5% per decade for people who stay active.The average V•O2max in healthy 30-year-olds is about 3.1 L/min.Using the information given here, what would the average V•O2maxbe in 60-year-olds who have been sedentary throughout theirlives and in 60-year-olds who have stayed active (keep in mindthat the decline is exponential)?
From the average of these values, determine the maximum number of hours you could work with this material in a year if the annual maximum permissible dose is 2.4 mSv and you count with 200 working days in a year
A worker will need to conduct a repair to a pipe containing radioactive waste. The pipe is 10 m
long, and the worker will need to be standing 50 cm from the pipe. A remote detector was
used to take a reading of 1.5 R/hr at 3 m from the pipe.
a) What is the dose rate at the work position?
b) If the worker's dose limit is 30 rad, how long will he have to complete the work?
Assume that there is no dose from approaching and leaving the work location.
Chapter 8 Solutions
Introduction To Health Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Q1arrow_forwardThe rate of a simple enzyme reaction is given by the standard Michaelis–Menten equation: rate = Vmax [s]/([s] + KM) if the Vmax of an enzyme is 100 μmole/sec and the KM is 1 mM, at what substrate concentration is the rate 50 μmole/sec? Plot a graph of rate versus substrate (s) concentration for [s] = 0 to 10 mM. Convert this to a plot of 1/rate versus 1/[s]. Why is the latter plot a straight line?arrow_forward✓ ON "O 2.75 MeV 0.511 MeV 0.511 MeV B, E= 1.73 MeV Eave = 0.721 Mev O MeVarrow_forward
- What is the exposure rate at 30 cm from a vial containing 20 mCi (740 MBq) of 131I?arrow_forwardIf the dose rate from a sample of Ra-223 was found to be 5.0 x 10-5 mSv per hour at 1.8 metres, calculate the dose rate at 4.8 metres. Show your calculations. Give your answer to two significant figures.arrow_forward15. An IV infusion is administered to a 120 lb patient by IV infusion at a rate of 1.8 mg/kg/hr. The drug has a half-life of 8 hours and distributes into a volume of 15 L. a) Find the concentration function C(t) while the infusion is being administered. b) Find the loading dose required to make C(1) a constant if the infusion continues. c) If the loading dose from part b is given followed by 24 hours of infusion at 1.8 mg/kg/hr, graph the concentration for the first 48 hours. d) If the loading dose from part b is given followed by 24 hours of infusion at 1.8 mg/kg/hr, how long will the concentration remain within the therapeutic window of 50-100 mcg/ml?arrow_forward
- The maximum permissible workday dose for occupational exposure to radiation is 26 mrem. A 55-kg laboratory technician absorbs 3.3 mJ of 0.40-MeV gamma rays in a workday. The relative biological efficiency (RBE) for gamma rays is 1.00. What is the ratio of the equivalent dosage received by the technician to the maximum permissible equivalent dosage? O 0.23 0.28 O 0.30 0.25arrow_forwardIf the gamma-ray dose rate is 50 mSv hr-1 at a distance of 1.0 m from a source, what is the dose rate at a distance of 10 m from the source?arrow_forwardA dose-response curve is generally shaped as a(n) __________.A.inverted VB.SC.inverted UD.Uarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON