Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.11P
(a)
To determine
Find the average stress increase beneath the center of the foundation.
(b)
To determine
Find the average stress increase beneath the center of the foundation.
(c)
To determine
Find the average stress increase beneath the center of the foundation.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
6.8 Refer to Figure P6.8. Using the procedure outlined in Section 6.8, determine the
average stress increase in the clay layer below the center of the foundation due to the
net foundation load of 50 ton. [Use Eq. (6.28).]
4:5 ft
3 ft
50 ton (net load)
10 ft
5 ft x 5 ft
Sand
y=100 lb/ft!
Sand
Yat=122 lb/ft³
Groundwater
table
Ysat ⇒120 lb/ft³
= 0.7
C=0.25
-C, 0,06
Preconsolidation pressure = 2000 lb/ft²
Figure P6.8
The plan of a foundation of uniform thickness for a building is shown in Figure 2. Determine the vertical stress increase at a depth of 10 m below the centroid. The foundation applies a vertical stress of 300 kPa on the soil surface.
please solve.
Chapter 8 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 8 - Four point loads with the same magnitude of P are...Ch. 8 - A point load of 500 kN is applied at the ground...Ch. 8 - A point load of 1000 kN is applied at the ground...Ch. 8 - A 10 ft diameter flexible loaded area is subjected...Ch. 8 - For the flexible loaded area in Problem 8.4, plot...Ch. 8 - Two line loads q1 and q2 of infinite lengths are...Ch. 8 - A 9 ft wide and infinitely long flexible strip...Ch. 8 - Figure P8.8 shows a flexible rectangular raft that...Ch. 8 - Prob. 8.9PCh. 8 - Prob. 8.10P
Knowledge Booster
Similar questions
- The increase in stress under a corner of a rectangular loading is given by Boussinesq formula which is as follows:1. What is the increase in stress at point that is 2.5 meters beneath a corner of a 1.5 meter x 2 meter footing carrying a total uniform load of 75 kPa? a. 133.26 kPab. 229.23 kPac. 253.14 kPad. 211.25 kPa2. What is the increase in stress at point that is 2.5 meters beneath the center of a 3 meter x 4 meter footing carrying a total uniform load of 75 kPa? a. 916.94 kPab. 533.04 kPac. 245.50 kPad. 922.54 kPa3. What uniform load will produce an increase in stress of 36 kPa at point that is 2.5 meters beneath the center of a 3 meter x 4 meter footing? a. 7.504 kPab. 1.123 kPac. 2.945 kPad. 5.213 kPaarrow_forwardDetermine the increase in vertical stress at a depth of 5 m below the centroid of the foundation shown in Figure 2.arrow_forwardrefer to the figure below. Determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 50 tons.arrow_forward
- The initial principal stresses at acertain depth in a clay soil are 200 kPa on the horizontal plane and 100 kPa on the vertical plane.Construction of a surface foundation induces additional stresses consisting of a vertical stress of 45 kPa, a lateral stress of 20 kPa, and a clockwise(with respect to the horizontal plane) shear stress of 40 kPa. Determine the change in shearing stress in kPa.arrow_forwardTwo foundations are located next to each other as follows. Determine the stress increase on a horizontal plane (i.e. - the increase in vertical stress) beneath Point A at a depth of 3 m below the ground surface. The foundations are bearing on the ground surface. 3 m- +2.5 m -6 m 5 m A O= 90 kPa = 120 kPa 6 marrow_forward7.7 78 Eq. (7.43) and μ, = 0. Refer to Figure P7.7. Using the procedure outlined in Section 7.10, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 445 kN. [Use Eq. (7.26).] Figusa M70arrow_forward
- A rectangular concrete slab, 3 m X 4.5 m, rests on the surface of a soil mass. The load on the slab is 2025 kN. Determine the vertical stress increase at a depth of 3 m (a) under the center of the slab, point A (see Figure); (b) under point B (see Figure); and (c) at a distance of 1.5 m from a corner, point C (see Figure). Compare your results with the Approximate Method and comment on the results. 4.5 m B 3 -1.5 m- Planarrow_forwardA rectangular concrete slab, 3 m X 4.5 m, rests on the surface of a soil mass. The load on the slab is 2025 kN. Determine the vertical stress increase at a depth of 3 m (a) under the center of the slab, point A (see Figure); (b) under point B (see Figure); and (c) at a distance of 1.5 m from a corner, point C (see Figure ). Compare your results with the Approximate Method and comment on the results.arrow_forwardSolve Problem 7.8 using Eq. (7.29). Ignore the post-construction settlement. 7.8 Solve Problem 7.4 with Eq. (7.20). Ignore the correction factor for creep. For the unit weight of soil, use γ = 115 lb/ft3. 7.4 Figure 7.3 shows a foundation of 10 ft × 6.25 ft resting on a sand deposit. The net load per unit area at the level of the foundation, qo, is 3000 lb/ft2. For the sand, μs = 0.3, Es = 3200 lb/in.2, Df = 2.5 ft, and H = 32 ft. Assume that the foundation is rigid and determine the elastic settlement the foundation would undergo. Use Eqs. (7.4) and (7.12).arrow_forward
- Redo Problem 6.12 using Figure 6.15. 6.12 Refer to Problem 6.1. Using Eqs. (6.3) and (6.29), estimate the average stress increase (av) below the center of the loaded area between depths of 3 m and 6 m. 6.1 A flexible circular area is subjected to a uniformly distributed load of 150 kN/m2 (Figure 6.2). The diameter of the load area is 2 m. Determine the stress increase in a soil mass at points located 3 m below the loaded area at r = 0, 0.4 m, 0.8 m, and 1 m. Use Boussinesqs solution. Figure 6.2 Increase in pressure under a uniformly loaded flexible circular areaarrow_forwardTwo foundations are located next to each other as follows. Determine the stress increase on a horizontal plane (i.e. - the increase in vertical stress) beneath Point A at a depth of 3 m below the ground surface. The foundations are bearing on the ground surface. -3 m 2.5 m -6 m 5 m ΤΑ o= 90 kPa O = 120 kPa 6 marrow_forwardA rectangular foundation 4 m x 6 m (Figure 1) transmits a stress of 100 kPa on the surface of a soil deposit. Plot the distribution of increases of vertical stresses with depth under points A, B, and C up to a depth of 20 m. At what depth is the increase in vertical stress below A less than 10% of the surface stress? Can I get a detailed explanation to the solution of this question? Including the finding of as and the graphs and finding the surface stress, load and increase in stress using the oz=4qsI methodarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning