CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is
F
ext
=
d
p
d
t
=
m
d
υ
d
t
+
υ
d
m
d
t
Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx, where k is a constant, and dm/dt = kυ. This gives, since Fext = mg,
m
g
=
m
d
υ
d
t
+
υ
(
k
υ
)
Or, dividing by k,
x
g
=
x
d
υ
d
t
+
υ
2
This is a differential equation that has a solution of the form υ = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics, Vol. 49 (1981), pp. 113–117.)
Q: What is the direction of the force on the current carrying conductor in the
magnetic field in each of the cases 1 to 8 shown below?
(1)
B
B
B into page
X X X
x
X X X X
(2)
B
11 -10°
B
x I
B
I out of page
(3)
I into page
(4)
B out of page
out of page
I
N
N
S
x X X X
I
X
X X X
I
(5)
(6)
(7)
(8)
S
Q: What is the direction of the magnetic field at point A, due to the current I in a
wire, in each of the cases 1 to 6 shown below? Note: point A is in the plane of the
page.
▪A
I
I
▪A
(1)
(2)
▪A
• I (out of page)
(3)
▪A
I
x I (into page)
▪A
▪A
I
(4)
(5)
(6)
A tennis ball is thrown into the air with initial speed vo=46 m/s and angle (theta) 38 degrees from the ground. Find the distance it travels (x) when it hits the ground.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.