CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is
F
ext
=
d
p
d
t
=
m
d
υ
d
t
+
υ
d
m
d
t
Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx, where k is a constant, and dm/dt = kυ. This gives, since Fext = mg,
m
g
=
m
d
υ
d
t
+
υ
(
k
υ
)
Or, dividing by k,
x
g
=
x
d
υ
d
t
+
υ
2
This is a differential equation that has a solution of the form υ = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics, Vol. 49 (1981), pp. 113–117.)
8.
With the aid of a diagram draw the following electric circuit and use the resistor as the load,
(a) Closed circuit
(b) Open circuit
Lab 8 Part 3 PHET Wave Interface simulation.
I am having trouble with this part of the lab.
Mick and Rick are twins born on Earth in the year 2175. Rick grows up to be an Earth-bound robotics technician while Mick becomes an intergalactic astronaut. Mick leaves the Earth on his first space mission in the year 2200 and travels, according to his clock, for 10 years at a speed of 0.75c. Unfortunately, at this point in his journey, the structure of his ship undergoes mechanical breakdown and the ship explodes. How old is Rick when his brother dies?
Chapter 8 Solutions
University Physics, Volume 2 - Technology Update Custom Edition for Texas A&M - College Station, 2/e
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.