Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope? Figure P8.80 Problems 80 and 81
Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope? Figure P8.80 Problems 80 and 81
Solution Summary: The author explains the formula to calculate the angular momentum of the astronauts.
Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope?
Figure P8.80 Problems 80 and 81
Definition Definition Product of the moment of inertia and angular velocity of the rotating body: (L) = Iω Angular momentum is a vector quantity, and it has both magnitude and direction. The magnitude of angular momentum is represented by the length of the vector, and the direction is the same as the direction of angular velocity.
How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.