Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
2nd Edition
ISBN: 9780137443000
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 6P
To determine
The magnitude and direction of force applied by Luis to put the knot at equilibrium if Adrienne exerts a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
STRUCTURES I
Homework #1: Force Systems
Name:
TA:
PROBLEM 1
Determine the horizontal and vertical components of
the force in the cable shown.
PROBLEM 2
The horizontal component of force F is 30 lb. What is the
magnitude of force F?
6
10
4
4
F = 600lbs
F = ?
The determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)
Hello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!
Chapter 8 Solutions
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
Ch. 8 - Prob. 1RQCh. 8 - Review Question 8.2 Give an example of a situation...Ch. 8 - Review Question 8.3 You read the following...Ch. 8 - Prob. 4RQCh. 8 - Review Question 8.5 You are trying to hold a heavy...Ch. 8 - Review Question 8.6 Why is a ball hanging by a...Ch. 8 - A falling leaf usually flutters while falling....Ch. 8 - Prob. 2MCQCh. 8 - A hammock is tied with ropes between two trees. A...Ch. 8 - Prob. 4MCQ
Ch. 8 - 5. A physics textbook lies on top of a chemistry...Ch. 8 - What does it mean if the torque of a force is...Ch. 8 - Prob. 7MCQCh. 8 - 8. Why do you tilt your body forward when hiking...Ch. 8 - 9. What does it mean if the torque of a 10-N force...Ch. 8 - What is the maximum angle to the horizontal you...Ch. 8 - Prob. 11MCQCh. 8 - 12. Is it possible for an object not to be in...Ch. 8 - Explain the meaning of torque so that a friend not...Ch. 8 - Prob. 14CQCh. 8 - What are the two conditions of equilibrium? What...Ch. 8 - Give three examples of situations in which an...Ch. 8 - The force that the body muscles exert on bones...Ch. 8 - A ladder leans against a wall. Construct a force...Ch. 8 - Using a crowbar, a person can remove a nail by...Ch. 8 - 20. Is it more difficult to do a sit-up with your...Ch. 8 - Sit on a chair with your feet straight down at the...Ch. 8 - Can you balance the tip of a wooden ruler...Ch. 8 - Try to balance a sharp wooden pencil on your...Ch. 8 - 24. Design a device that you can use to...Ch. 8 - Explain why it is easier to keep your balance...Ch. 8 - A carpenters trick to keep nails from bending when...Ch. 8 - Determine the torques about the axis of rotation P...Ch. 8 - 2. Three 200-N forces are exerted on the beam...Ch. 8 - 3. * A 2.0-m-long, 15-kg ladder is resting against...Ch. 8 - Figure P8.4 shows two different situations where...Ch. 8 - Three friends tie three ropes in a knot and pull...Ch. 8 - Prob. 6PCh. 8 - * Kate joins Jim, Luis, and Adrienne in the...Ch. 8 - You hang a light in front of your house using an...Ch. 8 - * Find the values of the forces the ropes exert on...Ch. 8 - Prob. 10PCh. 8 - Determine the masses m1 and m2 of the two objects...Ch. 8 - * Lifting an engine You work in a machine shop and...Ch. 8 - 13. * More lifting You exert a 630-N force on rope...Ch. 8 - Prob. 14PCh. 8 - 15. * Tightrope walking A tightrope walker wonders...Ch. 8 - 16. * Lifting patients An apparatus to lift...Ch. 8 - 17. A father (80 kg), mother (56 kg), daughter (16...Ch. 8 - Prob. 18PCh. 8 - * You place a 3.0-m-long board symmetrically...Ch. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - 23. EST Compare the two different designs of...Ch. 8 - Ray decides to paint the outside of his uncles...Ch. 8 - 25. * A 2.0-m-long uniform beam of mass 8.0 kg...Ch. 8 - * A uniform beam of length / and mass m supports a...Ch. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - 31. * An 80-kg clown sits on a 20-kg bike on a...Ch. 8 - s center of mass? (Hint: You can think of cutting...Ch. 8 - Leg support A persons broken leg is kept in place...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - * If the force F shown in Figure P8.35 is 840 N...Ch. 8 - Prob. 37PCh. 8 - 38. * You decide to hang another plant from a...Ch. 8 - Prob. 39PCh. 8 - * What mechanical work must you do to lift a log...Ch. 8 - 41. * A 70-g meter stick has a 30-g piece of...Ch. 8 - * You are trying to tilt a very tall refrigerator...Ch. 8 - Prob. 43PCh. 8 - 44. * You have an Atwood machine (see Figure 4.9 )...Ch. 8 - * EST You stand sideways in a moving train....Ch. 8 - 46. EST Your hand holds a liter of milk (mass...Ch. 8 - EST Body torque You hold a 4.0-kg computer....Ch. 8 - Prob. 48GPCh. 8 - 49. BIO Using triceps to push a table A man pushes...Ch. 8 - Prob. 50GPCh. 8 - Prob. 51GPCh. 8 - Prob. 52GPCh. 8 - 53.* BIO Dumbbell lift IA woman lifts a 3.6-kg...Ch. 8 - s shoulder joint exerts on her humerus.Ch. 8 - Prob. 55GPCh. 8 - * Eiichi has purchased an adjustable hand grip to...Ch. 8 - 57. *BIO While browsing books on neurophysiology,...Ch. 8 - 58. ** Touch detector You have two force sensors...Ch. 8 - * An 80-kg person stands at one end of a 130-kg...Ch. 8 - 61. EST Two people (50 kg and 75 kg) holding hands...Ch. 8 - Prob. 62GPCh. 8 - BIO Muscles work in pairs Skeletal muscles produce...Ch. 8 - BIO Muscles work in pairs Skeletal muscles produce...Ch. 8 - BIO Muscles work in pairs Skeletal muscles produce...Ch. 8 - BIO Muscles work in pairs Skeletal muscles produce...Ch. 8 - BIO Improper lifting and the back A careful study...Ch. 8 - BIO Improper lifting and the back A careful study...Ch. 8 - BIO Improper lifting and the back A careful study...Ch. 8 - BIO Improper lifting and the back A careful study...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- After the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2.arrow_forward
- The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forward
- According to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forward
- Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forwardThree point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.arrow_forwardThe drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University