Physical Universe
16th Edition
ISBN: 9780077862619
Author: KRAUSKOPF, Konrad B. (konrad Bates), Beiser, Arthur
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 55E
To determine
The differences between leptons and hadrons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hadrons and Leptons are two groups of partiles. Give details of the structural differences of the particles in each group.
The strong force between nucleons has a magnitude of approximately 2.5 × 104 N for two nucleons whose centers are 1.0 fm apart. What is the electrostatic force between two protons this distance apart? Compare the electrostatic force to the strong force.
13. The diagram shows a particle track recorded in a bubble
chamber at the CERN particle accelerator. The magnetic
field in the bubble chamber was 1.2 T, directed out of
the page. The initial radius of the particle is measured to
be 10 cm.
(a)
(b)
(c)
Does the particle have a positive or negative
charge? Explain your reasoning.
Determine the initial momentum of the particle.
Assume the particle is an electron or a positron.
Why does the particle's path spiral inward?
0
4
8
O
10 cm
Chapter 8 Solutions
Physical Universe
Ch. 8 - Prob. 1MCCh. 8 - Prob. 2MCCh. 8 - Prob. 3MCCh. 8 - Prob. 4MCCh. 8 - Prob. 5MCCh. 8 - Prob. 6MCCh. 8 - Prob. 7MCCh. 8 - Prob. 8MCCh. 8 - Prob. 9MCCh. 8 - Prob. 10MC
Ch. 8 - Prob. 11MCCh. 8 - Prob. 12MCCh. 8 - Prob. 13MCCh. 8 - Prob. 14MCCh. 8 - Prob. 15MCCh. 8 - Prob. 16MCCh. 8 - Prob. 17MCCh. 8 - Prob. 18MCCh. 8 - Prob. 19MCCh. 8 - Prob. 20MCCh. 8 - Prob. 21MCCh. 8 - Prob. 22MCCh. 8 - Prob. 23MCCh. 8 - Prob. 24MCCh. 8 - Prob. 25MCCh. 8 - Prob. 26MCCh. 8 - Prob. 27MCCh. 8 - Prob. 28MCCh. 8 - Prob. 29MCCh. 8 - Prob. 30MCCh. 8 - Prob. 31MCCh. 8 - Prob. 32MCCh. 8 - Prob. 33MCCh. 8 - Prob. 34MCCh. 8 - Prob. 35MCCh. 8 - Prob. 36MCCh. 8 - Prob. 37MCCh. 8 - Prob. 38MCCh. 8 - Prob. 39MCCh. 8 - Prob. 40MCCh. 8 - Prob. 1ECh. 8 - Prob. 2ECh. 8 - Prob. 3ECh. 8 - Prob. 4ECh. 8 - Prob. 5ECh. 8 - Prob. 6ECh. 8 - Prob. 7ECh. 8 - Prob. 8ECh. 8 - Prob. 9ECh. 8 - Prob. 10ECh. 8 - Prob. 11ECh. 8 - Prob. 12ECh. 8 - Prob. 13ECh. 8 - Prob. 14ECh. 8 - The polonium isotope 84210Po undergoes alpha decay...Ch. 8 - Prob. 16ECh. 8 - Prob. 17ECh. 8 - Prob. 18ECh. 8 - Prob. 19ECh. 8 - Prob. 20ECh. 8 - Prob. 21ECh. 8 - If the half-life of a radionuclide is 1 month, is...Ch. 8 - Prob. 23ECh. 8 - One-eighth of a sample of T90227h remains...Ch. 8 - Prob. 25ECh. 8 - Prob. 26ECh. 8 - Prob. 27ECh. 8 - Prob. 28ECh. 8 - Prob. 29ECh. 8 - Prob. 30ECh. 8 - Prob. 31ECh. 8 - Prob. 32ECh. 8 - Prob. 33ECh. 8 - Prob. 34ECh. 8 - Prob. 35ECh. 8 - Prob. 36ECh. 8 - Prob. 37ECh. 8 - Prob. 38ECh. 8 - Prob. 39ECh. 8 - Prob. 40ECh. 8 - Prob. 41ECh. 8 - Prob. 42ECh. 8 - Prob. 43ECh. 8 - Prob. 44ECh. 8 - Prob. 45ECh. 8 - Prob. 46ECh. 8 - Prob. 47ECh. 8 - Prob. 48ECh. 8 - Prob. 49ECh. 8 - Prob. 50ECh. 8 - Prob. 51ECh. 8 - Prob. 52ECh. 8 - Prob. 53ECh. 8 - Prob. 54ECh. 8 - Prob. 55ECh. 8 - Prob. 56ECh. 8 - Prob. 57ECh. 8 - Prob. 58E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times farther must z protons be for the coulomb force to match their gravitational attraction at 1marrow_forwardTwo ions containing a total of 98 protons, 59 electrons, & 126 neutrons are smashed together at the LHC (Large Hadron Collider). The aftermath of the collision contains neutrinos, neutrons, protons, & electrons. After the collision physicists detect 108 neutrinos, 28 neutrons, & 104 electrons. According to the Law of Conservaton of Charge, how many protons must also be present? number of protons present after collision =arrow_forwardWhy must the electrical polarity of the tubes in a linear accelerator be reversed at very short time intervals?arrow_forward
- Which quarks are found within a proton? a u, d, d, b u, u, d c u, b, d d u, t, darrow_forwardA synchrotron of 25 m radius accelerates protons from a kinetic energy of 50 to 1000 MeV in 1 second. The dipole magnets saturate at 1000 MeV. i) What is the maximal kinetic energy of a deuteron that it could accelerate? ii) Calculate the revolution frequency for protons and deuterons.arrow_forwardElectrons and positions are collided in a circular accelerator. Derive the expression for the center-of-mass energy of the particle.arrow_forward
- A particle physicist discovers a neutral particle with a mass of 2.02733 u that he assumes is two neutrons bound together. Find the binding energy. What is unreasonable about this result?arrow_forwardThe creation and study of new and very massive elementary particles is an important part of contemporary physics. To create a particle of mass M requires an energy Mc2 . With enough energy, an exotic particle can be created by allowing a fast-moving proton to collide with a similar target particle. Consider a perfectly inelastic collision between two protons: an incident proton with mass kinetic energy K, and momentum magnitude p joins with an originally stationary target proton to form a single product particle of mass M. Not all the kinetic energy of the incoming proton is available to create the product particle because conservation of momentum requires that the system as a whole still must have some kinetic energy after the collision. Therefore, only a fraction of the energy of the incident particle is available to create a new particle. (a) Show that the energy available to create a product particle is given by Mc2=2mpc21+K2mpc2 This result shows that when the kinetic energy K of the incident proton is large compared with its rest energy mpc2, 2then M approaches (2mpK)1/2/c. Therefore, if the energy of the incoming proton is increased by a factor of 9, the mass you can create increases only by a factor of 3, not by a factor of 9 as would be expected. (b) This problem can be alleviated by using colliding beams as is the case in most modern accelerators. Here the total momentum of a pair of interacting particles can be zero. The center of mass can be at rest after the collision, so, in principle, all the initial kinetic energy can be used for particle creation. Show that Mc2=2mc2(1+Kmc2) where K is the kinetic energy of each of the two identical colliding particles. Here, if k mc2, we have M directly proportional to K as we would desire.arrow_forwardIf two nuclei are to fuse in a nuclear reaction, they must be moving fast enough so that the repulsive Coulomb force between them does not prevent them for getting within R1014mof one another. At this distance or nearer, the attractive nuclear force can overcome the Coulomb force, and the nuclei are able to fuse. (a) Find a simple formula that can be used to estimate the minimum kinetic energy the nuclei must have if they are to fuse. To keep the calculation simple, assume the two nuclei are identical and moving toward one another with the same speed v. (b) Use this minimum kinetic energy to estimate the minimum temperature a gas of the nuclei must have before a significant number of them will undergo fusion. Calculate this minimum temperature first for hydrogen and then for helium. (Hint: For fusion to occur, the minimum kinetic energy when the nuclei are far apart must be equal to the Coulomb potential energy when they are a distance R apart.)arrow_forward
- Mesons are fanned from the following combinations of quarks (subscripts indicate color and AR= antired): (dR,dAR),(sG,uAG), and (sR,sAR) (a) Determine the charge and strangeness of each combination, (b) Identify one or more mesons formed by each quark-antiquark combination.arrow_forwardBriefly compare the Van de Graaff accelerator, linear accelerator, cyclotron, and synchrotron accelerator.arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning