
(a)
Find the vertical displacement of joint C.
(a)

Answer to Problem 4P
The vertical deflection at joint C
Explanation of Solution
Given information:
Area of members AB, BC, and CD are
The value of E is
Procedure to find the deflection of truss by virtual work method is shown below.
For Real system: If the deflection of truss is determined by the external loads, then apply method of joints or method of sections to find the real axial forces (F) in all the members of the truss.
For virtual system: Remove all given real loads, apply a unit load at the joint where is deflection is required and also in the direction of desired deflection. Use method of joints or method of sections to find the virtual axial forces
Finally use the desired deflection equation.
Apply the sign conventions for calculating reactions, forces and moments using the three equations of equilibrium as shown below.
For summation of forces along x-direction is equal to zero
For summation of forces along y-direction is equal to zero
For summation of moment about a point is equal to zero
Method of joints:
The negative value of force in any member indicates compression (C) and the positive value of force in any member indicates tension (T).
Condition for zero force members:
If only two non-collinear members are connected to a joint that has no external loads or reactions applied to it, then the force in both the members is zero.
If three members, two of which are collinear are connected to a joint that has no external loads or reactions applied to it, then the force in non-collinear member is zero.
Calculation:
Find the bar forces
Let
Let
Find the reactions at the supports using equilibrium equations:
Summation of moments about A is equal to 0.
Summation of forces along y-direction is equal to 0.
Summation of forces along x-direction is equal to 0.
Find the member forces using method of joints:
Apply equilibrium equation to the joint A:
Apply equilibrium equation to the joint D:
Apply equilibrium equation to the joint B:
Apply equilibrium equation to the joint C:
Sketch the bar forces produced by the P-system as shown in Figure 1.
Consider a dummy load of 1 kN directed vertically at joint C with the bar forces
Find the reactions at the supports using equilibrium equations:
Summation of moments about A is equal to 0.
Summation of forces along y-direction is equal to 0.
Summation of forces along x-direction is equal to 0.
Find the member forces using method of joints:
Apply equilibrium equation to the joint A:
Apply equilibrium equation to the joint D:
Apply equilibrium equation to the joint B:
Apply equilibrium equation to the joint C:
Sketch the bar forces
Refer Table 1 for vertical displacement of joint C.
(b)
Find the horizontal displacement of joint C.
(b)

Answer to Problem 4P
The horizontal deflection at joint C
Explanation of Solution
Given information:
Area of members AB, BC, and CD are
Calculation:
Consider a dummy load of 1 kN directed horizontally at joint C with the bar forces
Find the reactions at the supports using equilibrium equations:
Summation of moments about A is equal to 0.
Summation of forces along y-direction is equal to 0.
Summation of forces along x-direction is equal to 0.
Find the member forces using method of joints:
Apply equilibrium equation to the joint A:
Apply equilibrium equation to the joint D:
Apply equilibrium equation to the joint B:
Apply equilibrium equation to the joint C:
Sketch the bar forces
Refer Table 1 for horizontal displacement of joint C.
(c)
Find the horizontal displacement of joint D.
(c)

Answer to Problem 4P
The horizontal deflection at joint D
Explanation of Solution
Given information:
Area of members AB, BC, and CD are
Calculation:
Consider a dummy load of 1 kN directed horizontally at joint D with the bar forces
Find the reactions at the supports using equilibrium equations:
Summation of moments about A is equal to 0.
Summation of forces along y-direction is equal to 0.
Summation of forces along x-direction is equal to 0.
Find the member forces using method of joints:
Apply equilibrium equation to the joint A:
Apply equilibrium equation to the joint D:
The force in the member AB, BE, EC, BC, and CD are zero as it satisfies zero force member condition.
Sketch the bar forces
Find the vertical deflection at joint C
Find the horizontal deflection at joint C
Find the product of
Bar |
A |
L | ||||||||
AB | 1 | 10 | 0.455 | 0.341 | 0 | 0 | ||||
BC | 1 | 10 | 0.500 | 0.375 | 0 | 0 | ||||
CD | 1 | 10 | 0.909 | 0 | 0.026 | 0 | ||||
DE | 0.25 | 11 | 2.898 | 0.273 | 1 | 0.042 | 0.153 | |||
EA | 0.25 | 11 | 0.727 | 1 | 0.018 | |||||
EB | 0.25 | 9 | 13.133 | 0 | 0 | |||||
EC | 0.25 | 9 | 4.556 | 0.429 | 0 | 0.066 | 0 | |||
Refer Table 1.
The vertical deflection at joint C
The horizontal deflection at joint C
The horizontal deflection at joint D
Want to see more full solutions like this?
Chapter 8 Solutions
Connect Access Card For Fundamentals Of Structural Analysis (one Semester Access) 5th Edition
- G-1 The drawing shows the beam (B) and girder (G) layout for the third floor of a commercial building. The live load (LL) for the flow is 45 PSF and the dead load (DL), which consists of a 4" thick concrete slab weighs 50 PSF. For now, we will neglect the weight of the beams/girders. 24 ft 6 ft 6 ft 6 ft 6 ft 6 ft G-2 C6 30 ft G-3 24 ft B-1 B-2 B-3 B-4 B-5 B-6 G-4 Compute the distributed loads applied on girder G-2. Show a FBD of these loads and compute the reactions at columns C2 and C6.arrow_forwardable to help me with the question below with references too for study purpose Structural InvestigationThe Building Maintenance and Strata Management Act 2004 interprets “Structural elements,for a building means an internal or external load-bearing component of the building or part ofthe building that is essential to the stability of the building but exclude any door or window.”Loading-bearing components such as wall, column or beam, etc, are subjected to externalforces. (a) Interpret the diagnosis of a structural defect and discuss FOUR (4) external forces ona structure element that may cause structural cracks.(b) Discuss the effects of alkali-silica reaction on concrete structures and formulateFOUR (4) preventive measures.(c) Discuss the differences between chloride attack and sulphate attack on concretestructures(d) Formulate preventive measures to prevent or reduce chloride and sulphate attack onconcrete structures Hard FinishesNatural timber flooring such as timber strips and…arrow_forwardFor the gravity concrete dam shown in the figure, (the vertical stresses at toe and heel ((Pmax & Pmin) are and 52 ton/m respectively. following data are available:- -Unit weight of concrete (yconc)-2.4 ton/m³ Solve on paper -Neglect Wave pressure, silt pressure, ice force and earth quake force. #=0.65 Find factor of safety against sliding and overturning (F.Sslid & F.Sover) Azo 115 m 120 marrow_forward
- For the gravity concrete dam shown in the figure, (the vertical stresses at toe and heel ((Pmax & Pmin) are and 52 ton/m respectively. following data are available :- -Unit weight of concrete (yconc) 2.4 ton/m³ -Neglect Wave pressure, silt pressure, ice force and earth quake force. #=0.65 Find factor of safety against sliding and overturning (F.Sslid & F.Sover) A36 115 m m 120 marrow_forwardA horizontal cantilever of effective length 3a, carries two concentrated loads W at a distance a from the fixed end and W' at a distance a from the free end. Obtain a formula for the maximum deflection due to this loading using Mohr's method. If the cantilever is 250 mm by 150mm steel I beam, 3 m long having a second moment of area I as 8500 cm4, determine W and W'to give a maximum deflection of 6 mm when the maximum stress due to bending is 90 Mpa. Take Young's modulus of material E as 185 Gpa.arrow_forwardFor the gravity concrete dam shown in the figure, (the vertical stresses at toe and heel ((Pmax & Pmin) are and 52 ton/m respectively. following data are available :- -Unit weight of concrete (yconc) 2.4 ton/m² -Neglect Wave pressure, silt pressure, ice force and earth quake force. #=0.65 Find factor of safety against sliding and overturning (F.Sslid & F.Sover) AS 115 m Sm 120 marrow_forward
- Must be handwrittenShow your complete solution with proper working equations.Express intermediate answers to at least four (4) decimal places and round final answers to two (2) decimal places. Enclose and summarize your final answers in a boxarrow_forward: For the gravity concrete dam shown in the figure, the following data are available: The factor of safety against sliding (F.S sliding)=1.2 Unit weight of concrete (Yconc)=24 KN/m³ - Neglect( Wave pressure, silt pressure, ice force and earth quake force) μ=0.65, (Ywater) = 9.81 KN/m³ Find factor of safety against overturning (F.S overturning) 6m3 80m Smarrow_forwardAum AA waste incinerator stack emits 27,027 kg/yr of cadmium and has an effective stack might of 100 m. The wind speed is 5 m/s at an anemometer located at 10 m. It is a clear sunny day with the sun nearly overhead (Class B conditions). a. Calculate the ground-level cadmium concentration (in ug/m³) at a distance of 2 km directly downwind? [Refer to tables in the textbook to help with this problem] What is the concentration of cadmium (in µg/m³) inside of a house at the location in part (a) after two hours? Note that the initial concentration of cadmium in the house was zero, there are 0.25 air changes per hour (ach), there is no source of cadmium inside the house, and cadmium is considered a conservative pollutant.arrow_forward
- Must be handwrittenShow your complete solution with proper working equations.Express intermediate answers to at least four (4) decimal places and round final answers to two (2) decimal places. Enclose and summarize your final answers in a boxarrow_forwardFor the frame shown below, determine the vertical displacement at C. Assume that flexural rigidities AB and BC segments are EI and 2EI, respectively. Use the method of virtual work and show all working.arrow_forwardYou are an engineer designing an aeration tank for a wastewater treatment plant receiving municipal waste. The activated sludge system (aeration tank and secondary clarifier) you design needs to remove 85% of the incoming BODs from the primary effluent, giving a final concentration of 30.0 mg BOD5/L exiting the system. Your design will maintain a concentration of 2500 mg VSS/L and F/M ratio of 0.5 g BOD/g VSS d in the aeration tank. In an effort to keep the waste activated sludge low in water, only about 0.1% of the primary effluent flow (Q) exits the WAS line. The secondary effluent has a flow rate of 9990 m³/d. What volume (in m³) will the aeration tank need to be? Write out all equations and state any assumptions as needed. Primary effluent: Aeration tank V, X, S Secondary clarifier Secondary effluent: Q. Xo. So Qe, Xe, S 0 po RAS line: Q, X., S Activated sludge control volume WAS line: Qw, X, Sarrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





