
Concept explainers
(a)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying

Answer to Problem 49QAP
Explanation of Solution
The compound is adipic acid,
Molar mass of carbon is 12.01 g/mol, hydrogen is 1.008 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of adipic acid can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of 6 mol of carbon will be:
Mass of adipic acid in 1 mol is 146.14 g.
Thus, mass percent of C can be calculated as follows:
(b)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying

Answer to Problem 49QAP
Explanation of Solution
The compound is ammonium nitrate
Molar mass of nitrogen is 14 g/mol, hydrogen is 1.008 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of ammonium nitrate can be calculated as follows:
Now, mass of nitrogen in 1 mol is 14 g thus, mass of nitrogen in 2 mol is 28 g.
Mass of ammonium nitrate in 1 mol is 80.043 g.
Thus, mass percent of N can be calculated as follows:
(c)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying

Answer to Problem 49QAP
Explanation of Solution
The compound is caffeine
Molar mass of carbon is 12.01 g/mol, hydrogen is 1.008 g/mol, nitrogen is 14 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of caffeine can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 8 mol will be:
Mass of caffeine in 1 mol is 194.2 g.
Thus, mass percent of C can be calculated as follows:
(d)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying

Answer to Problem 49QAP
Explanation of Solution
The compound is chlorine dioxide
Molar mass of chlorine is 35.5 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of chlorine dioxide can be calculated as follows:
Now, mass of chlorine in 1 mol is 35.5 g and mass of chlorine dioxide in 1 mol is 67.5 g.
Thus, mass percent of Cl can be calculated as follows:
(e)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying

Answer to Problem 49QAP
Explanation of Solution
The compound is cyclohexanol
Molar mass of carbon is 12.01 g/mol, molar mass of hydrogen is 1.008 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of cyclohexanol can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 6 mol is 72.06 g.
Mass of cyclohexanol in 1 mol is 100.16 g.
Thus, mass percent of C can be calculated as follows:
(f)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying

Answer to Problem 49QAP
Explanation of Solution
The compound is dextrose
Molar mass of carbon is 12.01 g/mol, molar mass of hydrogen is 1.008 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of dextrose can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 6 mol is 72.06 g.
Mass of cyclohexanol in 1 mol is 100.16 g.
Thus, mass percent of C can be calculated as follows:
(g)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying

Answer to Problem 49QAP
Explanation of Solution
The compound is eicosane
Molar mass of carbon is 12.01 g/mol and molar mass of hydrogen is 1.008 g/mol.
Thus, the molar mass of eicosane can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 20 mol is 240.2 g.
Mass of eicosane in 1 mol is 282.55 g.
Thus, mass percent of C can be calculated as follows:
(h)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying

Answer to Problem 49QAP
Explanation of Solution
The compound is ethanol
Molar mass of carbon is 12.01 g/mol molar mass of oxygen is 16.0 g/mol and molar mass of hydrogen is 1.008 g/mol.
Thus, the molar mass of ethanol can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 2 mol is 24.02 g.
Mass of ethanol in 1 mol is 46.1 g.
Thus, mass percent of C can be calculated as follows:
Want to see more full solutions like this?
Chapter 8 Solutions
EBK INTRODUCTORY CHEMISTRY
- > H₂C=C-CH2-CH3 B. H₂O Pt C. + H2 + H₂O H D. 16. Give the IUPAC name for each of the following: B. Cl Cl c. Cl Cl 17. Draw the line-angle formula for each of the following compounds: 1. phenol 2. 1,3-dichlorobenzene 3. 4-ethyltoluene < Previous Submit Assignment Next ▸arrow_forwardno Ai walkthroughsarrow_forwardThe answer is shown. What is the reaction mechanism to arrive at the answer?arrow_forward
- no Ai walkthroughsarrow_forwardConsider the following nucleophilic substitution reaction. The compound listed above the arrow is the solvent for the reaction. If nothing is listed over the arrow, then the nucleophile is also the solvent for the reaction. Part 1 of 2 Br CH,CN + I¯ What is the correct mechanism for the reaction? Select the single best answer. @SN2 ○ SN 1 Part: 1/2 Part 2 of 2 Draw the products for the reaction. Include both the major organic product and the inorganic product. If more than one stereoisomer is possible, draw only one stereoisomer. Include stereochemistry where relevant. Click and drag to start drawing a structure. X હૈarrow_forward20.33 Think-Pair-Share (a) Rank the following dienes and dienophiles in order of increasing reactivity in the Diels-Alder reaction. (i) CO₂Et (ii) COEt || CO₂Et MeO MeO (b) Draw the product that results from the most reactive diene and most reactive dienophile shown in part (a). (c) Draw a depiction of the orbital overlap involved in the pericyclic reaction that oc- curs between the diene and dienophile in part (b). (d) Is the major product formed in part (b) the endo or exo configuration? Explain your reasoning.arrow_forward
- 20.40 The following compound undergoes an intramolecular Diels-Alder reaction to give a tricyclic product. Propose a structural formula for the product. CN heat An intramolecular Diels-Alder adductarrow_forwardWhat is the reaction mechanism for this? Can this even be done without a base?arrow_forwardWhat is the reaction mechanism for this?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





