College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 3CQ
Professional Application
Football coaches advise players to block, hit, and tackle with their feet on the ground rather than by leaping through the air.
Using the concepts of momentum, work, and energy, explain how a football player can be more effective with his feet on the Ground.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider the circuit shown in the figure below. (Let R = 12.0 (2.)
25.0 V
10.0
www
10.0 Ω
b
www
5.00 Ω
w
R
5.00 Ω
i
(a) Find the current in the 12.0-0 resistor.
1.95
×
This is the total current through the battery. Does all of this go through R? A
(b) Find the potential difference between points a and b.
1.72
×
How does the potential difference between points a and b relate to the current through resistor R? V
3.90 ... CP A rocket designed to place small payloads into orbit
is carried to an altitude of 12.0 km above sea level by a converted
airliner. When the airliner is flying in a straight line at a constant
speed of 850 km/h, the rocket is dropped. After the drop, the air-
liner maintains the same altitude and speed and continues to fly in
a straight line. The rocket falls for a brief time, after which its
rocket motor turns on. Once its rocket motor is on, the combined
effects of thrust and gravity give the rocket a constant acceleration
of magnitude 3.00g directed at an angle of 30.0° above the hori-
zontal. For reasons of safety, the rocket should be at least 1.00 km
in front of the airliner when it climbs through the airliner's alti-
tude. Your job is to determine the minimum time that the rocket
must fall before its engine starts. You can ignore air resistance.
Your answer should include (i) a diagram showing the flight paths
of both the rocket and the airliner, labeled at several…
1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity
c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°.
Outside the pipe the temperature is fixed at Tout = 15 °C.
If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature
of the fluid at the end of the pipe? (Answer: 83 °C)
please I need to show All work problems step by step
Chapter 8 Solutions
College Physics
Ch. 8 - An object that has a small mass and an object that...Ch. 8 - An object that has a small mass and an object that...Ch. 8 - Professional Application Football coaches advise...Ch. 8 - How can a small force impart the same momentum to...Ch. 8 - Professional Application Explain in terms of...Ch. 8 - While jumping on a trampoline, sometimes you land...Ch. 8 - Professional Application Tennis racquets have...Ch. 8 - Professional Application If you dive into water,...Ch. 8 - Under what circumstances is momentum conserved?Ch. 8 - Can momentum be conserved for a system if there...
Ch. 8 - Momentum for a system can be conserved in one...Ch. 8 - Professional Application Explain in terms of...Ch. 8 - Can objects in a system have momentum while the...Ch. 8 - Must the total energy of a system be conserved...Ch. 8 - What is an elastic collision?Ch. 8 - What is an inelastic collision? What is a...Ch. 8 - Mixed-pair ice skaters performing in a show are...Ch. 8 - A Small pickup truck that has a caliper shell...Ch. 8 - Figure 8.16 shows a cube at rest and a small...Ch. 8 - Professional Application Suppose a fireworks shell...Ch. 8 - Professional Application During a visit to the...Ch. 8 - Professional Application It is possible for the...Ch. 8 - (a) Calculate the momentum of a 2000-kg elephant...Ch. 8 - (a) What is the mass of a large ship that has a...Ch. 8 - (a) At what speed would a 2.00104 -kg airplane...Ch. 8 - (a) What is the momentum of a garbage truck that...Ch. 8 - A runaway train car that has a mass of 15,000 kg...Ch. 8 - The mass of Earth is 5.9721024 kg and its orbital...Ch. 8 - A bullet is accelerated down the barrel of a gun...Ch. 8 - Professional Application A car moving at 10 m/s...Ch. 8 - A person slaps her leg with her hand, bringing her...Ch. 8 - Professional Application A professional boxer hits...Ch. 8 - Professional Application Suppose a child drives a...Ch. 8 - Professional Application One hazard of space...Ch. 8 - Professional Application A 75.0-kg person is...Ch. 8 - Professional Application Military rifles have a...Ch. 8 - A cruise ship with a mass of 1.00107 kg strikes a...Ch. 8 - Calculate the final speed of a 110-kg rugby player...Ch. 8 - Water from a fire hose is directed horizontally...Ch. 8 - A 0.450-kg hammer is moving horizontally at 7.00...Ch. 8 - Starting with the definitions of momentum and...Ch. 8 - A ball with an initial velocity of 10 m/s moves at...Ch. 8 - When serving a tennis ball, a player hits the ball...Ch. 8 - A punter drops a ball from rest vertically 1 meter...Ch. 8 - Professional Application Train cars are coupled...Ch. 8 - Suppose a clay model of a koala bear has a mass of...Ch. 8 - Professional Application Consider the following...Ch. 8 - What is the velocity of a 900-kg car initially...Ch. 8 - A 1.80-kg falcon catches a 0.650-kg dove from...Ch. 8 - Two identical objects (such as billiard balls)...Ch. 8 - Professional Application Two manned satellites...Ch. 8 - A 70.0-kg ice hockey goalie, originally at rest,...Ch. 8 - A 0.240-kg billiard ball that is moving at 3.00...Ch. 8 - During an ice show, a 60.0-kg skater leaps into...Ch. 8 - Professional Application Using mass and speed data...Ch. 8 - A battleship that is 6.00*10' kg and is originally...Ch. 8 - Professional Application Two manned satellites...Ch. 8 - Professional Application A 30,000-kg freight car...Ch. 8 - Professional Application Space probes may be...Ch. 8 - A 0.0250-kg bullet is accelerated from rest to a...Ch. 8 - Professional Application One of the waste products...Ch. 8 - Professional Application The Moon's craters are...Ch. 8 - Professional Application Two football players...Ch. 8 - What is the speed of a garbage truck that is...Ch. 8 - During a circus act, an elderly performer thrills...Ch. 8 - (a) During an ice skating performance, an...Ch. 8 - Two identical pucks collide on an air hockey...Ch. 8 - Confirm that the results of the example Example...Ch. 8 - A 3000-kg cannon is mounted so that it can recoil...Ch. 8 - Professional Application A 5.50-kg bowling ball...Ch. 8 - Professional Application Ernest Rutherford (the...Ch. 8 - Professional Application Two cars collide at an...Ch. 8 - Starting with equations m1v1=m1v1cos1+m2v2cos2 and...Ch. 8 - Integrated Concepts A 90.0-kg ice hockey player...Ch. 8 - Professional Application Antiballistic missiles...Ch. 8 - Professional Application What is the acceleration...Ch. 8 - Professional Application Calculate the increase in...Ch. 8 - Professional Application Ion-propulsion rockets...Ch. 8 - Derive the equation for the vertical acceleration...Ch. 8 - Professional Application (a) Calculate the maximum...Ch. 8 - Given the following data for a fire...Ch. 8 - How much of a single-stage rocket that is 100,000...Ch. 8 - Professional Application (a) A 5.00-kg squid...Ch. 8 - Unreasonable Results Squids have been reported to...Ch. 8 - Construct Your Own Problem Consider an astronaut...Ch. 8 - Construct Your Own Problem Consider an artillery...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. A 1000 kg car pushes a 2000 kg truck that has a dead battery. When the driver steps on the accelerator, the ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
Distinguish between the concepts of sexual differentiation and sex determination.
Concepts of Genetics (12th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (3rd Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an isothermal process, you are told that heat is being added to the system. Which of the following is not true? (a) The pressure of the gas is decreasing. (b) Work is being done on the system. (c) The average kinetic energy of the particles is remaining constant. (d) The volume of the gas is increasing. (e) Work is being done by the system.arrow_forwardNo chatgpt pls will upvotearrow_forward8.114 CALC A Variable-Mass Raindrop. In a rocket-propul- sion problem the mass is variable. Another such problem is a rain- drop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is dp dv dm Fext = + dt dt dt = Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m kx, where k is a constant, and dm/dt = kv. This gives, since Fext = mg, dv mg = m + v(kv) dt Or, dividing by k, dv xgx + v² dt This is a differential equation that has a solution of the form v = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero. (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the raindrop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of…arrow_forward
- 8.13 A 2.00-kg stone is sliding Figure E8.13 F (kN) to the right on a frictionless hori- zontal surface at 5.00 m/s when it is suddenly struck by an object that exerts a large horizontal force on it for a short period of 2.50 time. The graph in Fig. E8.13 shows the magnitude of this force as a function of time. (a) What impulse does this force exert on t (ms) 15.0 16.0 the stone? (b) Just after the force stops acting, find the magnitude and direction of the stone's velocity if the force acts (i) to the right or (ii) to the left.arrow_forwardPlease calculate the expectation value for E and the uncertainty in E for this wavefunction trapped in a simple harmonic oscillator potentialarrow_forwardIf an object that has a mass of 2m and moves with velocity v to the right collides with another mass of 1m that is moving with velocity v to the left, in which direction will the combined inelastic collision move?arrow_forward
- Please solve this questionarrow_forwardPlease solvearrow_forwardQuestions 68-70 Four hundred millilitres (mL) of a strong brine solution at room temperature was poured into a measuring cylinder (Figure 1). A piece of ice of mass 100 g was then gently placed in the brine solution and allowed to float freely (Figure 2). Changes in the surface level of the liquid in the cylinder were then observed until all the ice had melted. Assume that the densities of water, ice and the brine solution are 1000 kg m-3, 900 kg m3 and 1100 kg m3, respectively. 68 Figure 1 400 400 Figure 2 1m² = 1x10 mL After the ice was placed in the brine solution and before any of it had melted, the level of the brine solution was closest to 485 mL. B 490 mL. C 495 mL. Displaced volume by ice. D 500 mL. weight of ice 69 The level of the brine solution after all the ice had melted was A 490 mL B 495 mL D 1100kg/m² = 909 xious mis 70 Suppose water of the same volume and temperature had been used instead of the brine solution. In this case, by the time all the ice had melted, the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY