COLLEGE PHYSICS (LL W/WEBASSIGN)
COLLEGE PHYSICS (LL W/WEBASSIGN)
11th Edition
ISBN: 9781337741644
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 37P

Four objects are held in position at the corners of a rectangle by light rods as shown in Figure P8.37. Find the moment of inertia of the system about (a) the x-axis, (b) they-axis, and (c) an axis through O and perpendicular to the page.

Chapter 8, Problem 37P, Four objects are held in position at the corners of a rectangle by light rods as shown in Figure

(a)

Expert Solution
Check Mark
To determine
The moment of inertia of the system about x -axis.

Answer to Problem 37P

The moment of inertia of the system about x -axis is 99.0kgm2 .

Explanation of Solution

In general, the moment of inertia of the objects is defined as I=miri2 and in the same way, this problem is solved.

Given info The masses m1 , m2 , m3 , and m4 of the objects  are 2.00kg , 3.00kg , 4.00kg , and 2.00kg respectively and the distance of these objects from the x -axis is 3.00m .

The formula for the moment of inertia of these objects about x -axis is,

Ix=m1y2+m2y2+m3y2+m4y2

  • m1 , m2 , m3 , and m4 are masses of the objects.
  • y is the distance of the object from x -axis.

Substitute 2.00kg for m1 , 3.00kg for m2 , 4.00kg for m3 , 2.00kg for m4 , and 3.00m for y to find Ix .

Ix=(2.00kg+3.00kg+4.00kg+2.00kg)(3.00m)2=99.0kgm2

Thus, the moment of inertia of the system about x -axis is 99.0kgm2 .

Conclusion:

Therefore, the moment of inertia of the system about x -axis is 99.0kgm2 .

(b)

Expert Solution
Check Mark
To determine
The moment of inertia of the system about y -axis.

Answer to Problem 37P

The moment of inertia of the system about y -axis is 44.0kgm2 .

Explanation of Solution

Given info: The masses m1 , m2 , m3 , and m4 of the objects  are 2.00kg , 3.00kg , 4.00kg , and 2.00kg respectively and the distance of these objects from the y -axis is 2.00m .

The formula for the moment of inertia of these objects about y -axis is,

Iy=m1x2+m2x2+m3x2+m4x2

  • m1 , m2 , m3 , and m4 are masses of the objects.
  • x is the distance of the object from y -axis.

Substitute 2.00kg for m1 , 3.00kg for m2 , 4.00kg for m3 , 2.00kg for m4 , and 2.00m for x to find Iy .

Iy=(2.00kg+3.00kg+4.00kg+2.00kg)(2.00m)2=44.0kgm2

Thus, the moment of inertia of the system about y -axis is 44.0kgm2 .

Conclusion:

Therefore, the moment of inertia of the system about x -axis is 44.0kgm2 .

(c)

Expert Solution
Check Mark
To determine
The moment of inertia of the system about an axis through O -and perpendicular to the page.

Answer to Problem 37P

The moment of inertia of the system about an axis through O -and perpendicular to the page is 143kgm2 .

Explanation of Solution

The distance of each object from the point O is r=x2+y2 .

Given info: The masses m1 , m2 , m3 , and m4 of the objects  are 2.00kg , 3.00kg , 4.00kg , and 2.00kg respectively and the distances of these objects from x and y -axes are 3.00m and 2.00m .

The formula for the moment of inertia of these objects about O is,

Iy=(m1+m2+m3+m4)x2+y2

  • m1 , m2 , m3 , and m4 are masses of the objects.
  • x is the distance of the object from y -axis.
  • y is the distance of the object from x -axis

Substitute 2.00kg for m1 , 3.00kg for m2 , 4.00kg for m3 , 2.00kg for m4 , 2.00m for x , 3.00m for y to find IO .

Iy=(2.00kg+3.00kg+4.00kg+2.00kg)(3.00m)2+(2.00m)2=143kgm2

Thus, the moment of inertia of the system about an axis through O -and perpendicular to the page is 143kgm2 .

Conclusion:

Therefore, the moment of inertia of the system about an axis through O -and perpendicular to the page is 143kgm2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 8 Solutions

COLLEGE PHYSICS (LL W/WEBASSIGN)

Ch. 8 - Why does a long pole help a tightrope walker stay...Ch. 8 - A person stands a distance R from a doors hinges...Ch. 8 - Orbiting spacecraft contain internal gyroscopes...Ch. 8 - If you toss a textbook into the air, rotating it...Ch. 8 - Stars originate as large bodies of slowly rotating...Ch. 8 - An object is acted on by a single nonzero force of...Ch. 8 - In a tape recorder, the tape is pulled past the...Ch. 8 - (a) Give an example in which the net force acting...Ch. 8 - Gravity is an example of a central force that acts...Ch. 8 - A cat usually lands on its feet regardless of the...Ch. 8 - A solid disk and a hoop are simultaneously...Ch. 8 - A mouse is initially at rest on a horizontal...Ch. 8 - The cars in a soapbox derby have no engines; they...Ch. 8 - A man opens a 1.00-m wide door by pushing on it...Ch. 8 - A worker applies a torque to a nut with a wrench...Ch. 8 - The fishing pole in Figure P8.3 makes an angle of...Ch. 8 - Find the net torque on the wheel in Figure P8.4...Ch. 8 - Figure P8.4 Calculate the net torque (magnitude...Ch. 8 - A dental bracket exerts a horizontal force of 80.0...Ch. 8 - A simple pendulum consists of a small object of...Ch. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - The Xanthar mothership locks onto an enemy cruiser...Ch. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Torque and the Two Conditions for Equilibrium 17....Ch. 8 - Prob. 18PCh. 8 - A cook holds a 2.00-kg carton of milk at arm's...Ch. 8 - A meter stick is found to balance at the 49.7-cm...Ch. 8 - Prob. 21PCh. 8 - A beam resting on two pivots has a length of L =...Ch. 8 - Prob. 23PCh. 8 - When a person stands on tiptoe (a strenuous...Ch. 8 - A 500.-N uniform rectangular sign 4.00 m wide and...Ch. 8 - A window washer is standing on a scaffold...Ch. 8 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 8 - A hungry bear weighing 700. N walks out on a beam...Ch. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Write the necessary equations of equilibrium of...Ch. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Four objects are held in position at the corners...Ch. 8 - If the system shown in Figure P8.37 is set in...Ch. 8 - A large grinding wheel in the shape of a solid...Ch. 8 - An oversized yo-yo is made from two identical...Ch. 8 - An approximate model for a ceiling fan consists of...Ch. 8 - A potters wheel having a radius of 0.50 m and a...Ch. 8 - A model airplane with mass 0.750 kg is tethered by...Ch. 8 - A bicycle wheel has a diameter of 64.0 cm and a...Ch. 8 - A 150.-kg merry-go-round in the shape of a...Ch. 8 - An Atwoods machine consists of blocks of masses m1...Ch. 8 - The uniform thin rod in Figure P8.47 has mass M =...Ch. 8 - A 2.50-kg solid, uniform disk rolls without...Ch. 8 - A horizontal 800.-N merry-go-round of radius 1.50...Ch. 8 - Four objectsa hoop, a solid cylinder, a solid...Ch. 8 - A light rod of length = 1.00 m rotates about an...Ch. 8 - A 240-N sphere 0.20 m in radius rolls without...Ch. 8 - A solid, uniform disk of radius 0.250 m and mass...Ch. 8 - A car is designed to get its energy from a...Ch. 8 - The top in Figure P8.55 has a moment of inertia of...Ch. 8 - A constant torque of 25.0 N m is applied to a...Ch. 8 - A 10.0-kg cylinder rolls without slipping on a...Ch. 8 - Use conservation of energy to determine the...Ch. 8 - A 2.00-kg solid, uniform ball of radius 0.100 m is...Ch. 8 - Each of the following objects has a radius of...Ch. 8 - A metal hoop lies on a horizontal table, free to...Ch. 8 - A disk of mass m is spinning freely at 6.00 rad/s...Ch. 8 - (a) Calculate the angular momentum of Earth that...Ch. 8 - A 0.005 00-kg bullet traveling horizontally with a...Ch. 8 - A light, rigid rod of length = 1.00 m rotates...Ch. 8 - Haileys comet moves about the Sun in an elliptical...Ch. 8 - A student holds a spinning bicycle wheel while...Ch. 8 - A 60.0-kg woman stands at the rim of a horizontal...Ch. 8 - A solid, horizontal cylinder of mass 10.0 kg and...Ch. 8 - A student sits on a rotating stool holding two...Ch. 8 - The puck in Figure P8.71 has a mass of 0.120 kg....Ch. 8 - A space station shaped like a giant wheel has a...Ch. 8 - A cylinder with moment of inertia I1 rotates with...Ch. 8 - A particle of mass 0.400 kg is attached to the...Ch. 8 - Additional Problems A typical propeller of a...Ch. 8 - Prob. 76APCh. 8 - Prob. 77APCh. 8 - Prob. 78APCh. 8 - A uniform ladder of length L and weight w is...Ch. 8 - Two astronauts (Fig. P8.80), each haring a mass of...Ch. 8 - S This is a symbolic version of problem 80. Two...Ch. 8 - Two window washers. Bob and Joe, are on a...Ch. 8 - A 2.35-kg uniform bar of length = 1.30 m is held...Ch. 8 - A light rod of length 2L is free to rotate in a...Ch. 8 - Prob. 85APCh. 8 - A uniform thin rod of length L and mass M is free...Ch. 8 - Prob. 87APCh. 8 - Prob. 88APCh. 8 - A war-wolf, or trebuchet, is a device used during...Ch. 8 - A string is wrapped around a uniform cylinder of...Ch. 8 - The Iron Cross When a gymnast weighing 750 N...Ch. 8 - In an emergency situation, a person with a broken...Ch. 8 - An object of mass m1 = 4.00 kg is connected by a...Ch. 8 - Prob. 94APCh. 8 - A 3.2-kg sphere is suspended by a cord that passes...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY