Modern Physics
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
Question
Book Icon
Chapter 8, Problem 30P
To determine

The uncertainty product ΔrΔp for the 1s electron of a hydrogen-like atom.

Expert Solution & Answer
Check Mark

Answer to Problem 30P

The uncertainty product ΔrΔp for the 1s electron of a hydrogen-like atom is 0.866.

Explanation of Solution

To compute uncertainty in distance, first calculate average distance and average square distance using radial probability distance.

Write the expression for probability density.

    P1s(r)=4Za03r2e2Zr/a0

Here, P(r) is the probability density, Z is the atomic number, a0 is the Bohr’s radius and r is the radius.

Write the expression for average distance.

    r=0rP1s(r)dr

Here, r is the average distance.

Substitute 4Za03r2e2Zr/a0 for P1s(r) in above equation.

  r=4Za030r3e2Zr/a0dr        (I)

Write the expression for Average Square of distance.

    r2=0r2P1s(r)dr

Here, r2 is Average Square of distance.

Substitute 4Za03r2e2Zr/a0 for P1s(r) in above equation.

    r2=4Za030r4e2Zr/a0dr        (II)

Substitute z for 2Zra0 in equation (I).

    r=4(Za0)3(a02Z)40z3ezdz=14(a0Z)3!=32(a0Z)

Substitute z for 2Zra0 in equation (II).

    r2=4(Za0)3(a02Z)50z4ezdz=4!8(a0Z)2=3(a0Z)2

Write the expression for uncertainty of radius.

    Δr=(r2r2)1/2

Substitute 3(a0Z)2 for r2 and 32(a0Z) for r in above equation.

    Δr=(3(a0Z)294(a0Z)2)1/2=a0Z(394)1/2=0.866a0Z

Write the expression for the average potential energy.

    U=kZe201rP1s(r)dr=4kZe2(Za0)30re2Zr/a0dr=4kZe2(Za0)3(a02Z)2=k(Ze)2a0

Write the expression for average momentum.

    p2=2meK=2meEU

Here, p is the average momentum, me is the mass of electron, E is the total energy and U is the average potential energy.

Substitute k(Ze)22a0 for E and 2meke2 for a0 .

    p2=2mek(Ze)22a0=(Za0)2

From symmetry p=0 and uncertainty in momentum is:

    Δp=(p2)1/2=Za0

So product of uncertainty in momentum and uncertainty in position is:

    ΔrΔp=(0.866a0Z)(Za0)=0.866

This value 0.866 is consistent for any value of Z  and with the uncertainty principle.

Conclusion:

Thus, the uncertainty product ΔrΔp for the 1s electron of a hydrogen-like atom is 0.866.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?
Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were:  222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33   Give in the answer window the calculated repeated experiment variance in m/s2.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning