Matlab
Matlab
6th Edition
ISBN: 9781119299257
Author: Amos Gilat
Publisher: WILEY CONS
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 29P

Estimated values of thermal conductivity of silicon at different temperatures are given in the following table.

    T(K) 2 4 6 8 10 20 40 60
    k(W/m-K) 46 300 820 1,560 2,300 5,000 3,500 2,100
    T(K) 80 100 150 250 350 500 1,000 1,400
    k(W/m-K) 1,350 900 400 190 120 75 30 20

(a) Make a plot of k versus T using log scale on both axes.

(b) Curve-fit the data vith a second-order polynomial y = ax2+ bx + C in which x = log(T) and y = log(k). Once the coefficients a, b, and c are determined, write an equation for k as a function of log(T). Use this equation for curve-fitting the data. Make a second plot that shows the data points with markers and the curve-fitted equation with a solid line.

(c) Repeat part (b) using a third-order polynomial.

Blurred answer
Students have asked these similar questions
For each of the time​ series, construct a line chart of the data and identify the characteristics of the time series​ (that is,​ random, stationary,​ trend, seasonal, or​ cyclical). Year    Month    Rate (%)2009    Mar    8.72009    Apr    9.02009    May    9.42009    Jun    9.52009    Jul    9.52009    Aug    9.62009    Sep    9.82009    Oct    10.02009    Nov    9.92009    Dec    9.92010    Jan    9.82010    Feb    9.82010    Mar    9.92010    Apr    9.92010    May    9.62010    Jun    9.42010    Jul    9.52010    Aug    9.52010    Sep    9.52010    Oct    9.52010    Nov    9.82010    Dec    9.32011    Jan    9.12011    Feb    9.02011    Mar    8.92011    Apr    9.02011    May    9.02011    Jun    9.12011    Jul    9.02011    Aug    9.02011    Sep    9.02011    Oct    8.92011    Nov    8.62011    Dec    8.52012    Jan    8.32012    Feb    8.32012    Mar    8.22012    Apr    8.12012    May    8.22012    Jun    8.22012    Jul    8.22012    Aug    8.12012    Sep    7.82012    Oct…
For each of the time​ series, construct a line chart of the data and identify the characteristics of the time series​ (that is,​ random, stationary,​ trend, seasonal, or​ cyclical). Date    IBM9/7/2010    $125.959/8/2010    $126.089/9/2010    $126.369/10/2010    $127.999/13/2010    $129.619/14/2010    $128.859/15/2010    $129.439/16/2010    $129.679/17/2010    $130.199/20/2010    $131.79 a. Construct a line chart of the closing stock prices data. Choose the correct chart below.
For each of the time​ series, construct a line chart of the data and identify the characteristics of the time series​ (that is,​ random, stationary,​ trend, seasonal, or​ cyclical) Date    IBM9/7/2010    $125.959/8/2010    $126.089/9/2010    $126.369/10/2010    $127.999/13/2010    $129.619/14/2010    $128.859/15/2010    $129.439/16/2010    $129.679/17/2010    $130.199/20/2010    $131.79

Chapter 8 Solutions

Matlab

Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY