
Solve the following differential equations subject to the specified initial conditions
- (a) d2v/dt2 + 4v = 12, v(0) = 0, dv(0)/dt = 2
- (b) d2i/dt2 + 5 di/dt + 4i = 8, i(0) = −1, di(0)/dt = 0
- (c) d2v/dt2 + 2 dv/dt + v = 3, v(0) = 5, dv(0)/dt = 1
- (d) d2i/dt2 + 2 di/dt + 5i = 10, i(0) = 4, di(0)/dt = −2
(a)

Find the expression of
Answer to Problem 29P
The expression of
Explanation of Solution
Given data:
The differential equation is,
The values of initial conditions are,
Formula used:
Write an expression to find the voltage response with the step input, if the roots of characteristic equation are real and imaginary.
Here,
Write a general expression for the roots of characteristic equation when the roots are real and imaginary.
Write an expression to solve quadratic equation.
Here,
Calculation:
From equation (1), the characteristic equation is written as follows.
From the equation (6),
Substitute
Simplify the equation.
Therefore, the roots of characteristic equations are real and imaginary.
Compare the values of roots with the equation (3) and equation (4).
Substitute
At
Therefore,
Substitute
For the step response
Substitute
Substitute
Substitute
Substitute
Substitute
Differentiate equation (11) with respect to
Substitute
Substitute
Substitute
Conclusion:
Thus, the expression of
(b)

Find the expression of
Answer to Problem 29P
The expression of
Explanation of Solution
Given data:
The differential equation is,
The values of initial conditions are,
Formula used:
Write a general expression for the current response with the step input, if the roots of characteristic equation are real and negative.
Here,
Calculation:
From equation (14), the characteristic equation is written as follows.
Compare the equation (16) with the quadratic equation
Substitute
Simplify the equation.
Therefore, the roots of characteristic equations are real and negative.
Substitute
At
Therefore,
Substitute
For the step response
Substitute
Substitute
Substitute
Substitute
Simplify the above equation to find
Differentiate equation (19) with respect to
Substitute
Substitute
Substitute equation (20) in above equation to find
Simplify the above equation to find
Substitute
Substitute
Conclusion:
Thus, the expression of
(c)

Find the expression of
Answer to Problem 29P
The expression of
Explanation of Solution
Given data:
The differential equation is,
The values of initial conditions are,
Formula used:
Write an expression to find the voltage response with the step input, if the roots of characteristic equation are real and equal.
Here,
Write a general expression for the roots of characteristic equation when the roots are real and equal.
Calculation:
From equation (21), the characteristic equation is written as follows.
Compare the equation (24) with the quadratic equation
Substitute
Simplify the equation.
Therefore, the roots of characteristic equations are real and imaginary.
Substitute
Substitute
Substitute
For the step response,
Substitute
Substitute
Substitute
Substitute
Simplify the above equation to find
Expand the equation (27) as follows:
Differentiate the above with respect to
Substitute
Substitute
Simplify the above equation to find
Substitute
Substitute
Conclusion:
Thus, the expression of
(d)

Find the expression of
Answer to Problem 29P
The expression of
Explanation of Solution
Given data:
The differential equation is,
The values of initial conditions are,
Formula used:
Write an expression to find the current response with the step input, if the roots of characteristic equation are real and imaginary.
Calculation:
From equation (28), the characteristic equation is written as follows.
From the equation (6),
Substitute
Simplify the equation.
Therefore, the roots of characteristic equations are real and imaginary.
Compare the values of roots with the equation (3) and equation (4).
Substitute
Substitute
For the step response,
Substitute
Substitute
Substitute
Substitute
Simplify the above equation to find
Substitute
Differentiate equation (34) with respect to
Substitute
Substitute
Substitute
Conclusion:
Thus, the expression of
Want to see more full solutions like this?
Chapter 8 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
- Medium 1 is a lossless dielectric (ε₁=ε,ε, μ₁=μ₁, σ₁=0) Medium 2 is a lossless dielectric (ε=&&₂, μ=μ₁, σ₁=0) [бг Мо о = = 0] [2 Mo σ₂ = 0] E₁ (z) = Ele² + Пe+jB₁²] E2 (z) = E Te² and tot = constant 1. For the case εr1 = 1, &r2= 16, E₁x=1 V/m and a frequency f = 750 MHz determine: λι = n₁ = 22 = n2= r = T= 2. The magnitude |E1 tot (z)| will show an interference pattern in region 1 as: E˜(z)=E,{1+Te®®]e¯MS =E||{1+Te^^^^\]e=##} | = |E|+Texp(j) For an incident field E₁x=1 V/m SKETCH the magnitude of E1 tot (z)| and |E20 (z) on the graph below. Plot the values at 2/4 increments and sketch between. What is the SWR?arrow_forwardPlease don't use AIarrow_forwardPlease don't use AIarrow_forward
- 3) In the ideal autotransformer circuit shown below find 11, 12 and lo. Find the average power delivered to the load. (hint: write KVL for both sides) 20/30° V(+ 2-1602 200 turns V₂ 10 + j40 Ω 80 turns V₁arrow_forward11-2) Now consider that white noise (i.e., noise with a PSD that is constant with frequency) is introduced in the channel of the system described in the previous problem. An ideal low pass filter is used at the receiver input to reduce the noise as much as possible, while transmitting the desired signal. (a) By what factor should the cutoff frequency of the noise reduction filter be reduced in the 16-PAM case, compared to binary? (b) By what factor will the noise power at the decision circuit be reduced in the 16-PAM case? (c) By what factor will the noise amplitude at the decision circuit be reduced in the 16-PAM case? (d) To obtain the same symbol error rate for 16-PAM as for binary, how should the minimum level spacing for 16-PAM compare to binary? (e) If the 16-PAM level spacing is adjusted according to part (d) above, by what factor will the average signal power be increased in the 16-PAM case, compared to binary?arrow_forward11-1) similar to Lathi & Ding, Prob. P.6.7-5 Data at a bit rate Rb must be transmitted using either binary NRZ polar signaling or 16-ary PAM NRZ polar signaling. (a) By what factor will the symbol rate be reduced in the 16-PAM case? (b) By what factor will bandwidth required from the (lowpass) channel be reduced in the 16-PAM case? (c) Assuming the minimum spacing between pulse levels must be the same in both cases, by what factor will the average power be increased in the 16-PAM case? [Hint: take the pulse amplitudes to be ±A in the binary case, and ±A, ±3A, ±5A,..., ±154, and recall that scaling pulse amplitude by a factor k scales the pulse energy by a factor R². Assume that the data is random, so that all 16 levels are equally likely, and that the same pulse shape is used in both cases.] Warning: Solutions to the textbook problem that are posted online are mostly wrong. Work it out for yourself.arrow_forward
- 11-3) similar to Lathi & Ding, Prob. P.6.8-1 Consider the carrier modulator shown in the figure below, which transmits a binary carrier signal. The baseband generator uses polar NRZ signaling with rectangular pulses. The data rate is 8 Mbit/s. (a) If the modulator generates a binary PSK signal, what is the bandwidth of the modulated output? (b) If the modulator generates FSK with the difference fel - fco = 6 MHz (cf. Fig 6.32c), determine the modulated signal bandwidth. Binary data source Baseband signal generator Modulated output Modulator N-E---arrow_forwardFor the circuit shown, find (i) closed-loop voltage gain (ii) Z i of the circuit (iii) f_max. The slew rate is 0.6V/us. ((write your answer in Kilo ohm)) 2Vpp R ww 20 kQ R₁ ww 200 ΚΩ 9+18 V - 18 V 10 kn R₁₂ ΚΩ ((write your answer in KHz))arrow_forwardillustrate the phenomenon of phase reversal in CE amplifier i- When signal current =OA, so IB-8uA ii- When input signal reaches positive peak, so IB=16uA ii- When input signal reaches negative peak, so IB=4uA R₁ www + Vcc = 12V Rc=6kn 16 A 8 μA 4 μА 0 www RE ẞ = 100 VCarrow_forward
- In the circuit shown, find the voltage gain. Given that ẞ = 80 and input resistance Rin=2kQ. SIGNAL +10 V Rc=6kn 4-2 210arrow_forwardFor the transistor amplifier shown, R₁-11kQ, R2=6kQ, Rc=2kQ, RE-3kQ and R₁=2k0. (i) Draw d.c. load line (ii) Determine the DC operating point (iii) Draw a.c. load line. Assume V_BE = 0.7 V. and determine the new operating point + Vcc = 15 V RC Cc Cin R1 wwwwww wwwww R₁₂ RE CE RLarrow_forwardthe first part is the second part write your answer such as: (AND, OR, INVERTER, NAND, NOR) D₁ AK D, R₁ B K First Part? the third part is , and the total are R4 R7 Output R5 R₁ T R6 R3 -UBB Second Part? Third Part? Total?arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





