Concept explainers
(a)
The constant friction force for the last
(a)
Answer to Problem 25AP
The constant friction force for the last
Explanation of Solution
Given info: The mass of the empty car is
The formula to calculate the energy by equation of motion is,
Here,
The formula of kinetic energy at start is,
Substitute
The formula of kinetic energy at final point is,
Substitute
The formula of the potential energy at start is,
Substitute
The formula of the potential energy at final point is,
Substitute
The formula of the energy wasted due to friction is,
Substitute
Substitute
Substitute
Conclusion:
Therefore, the constant friction force for the last
(b)
The highest speed reached by the car.
(b)
Answer to Problem 25AP
The highest speed reached by the car is
Explanation of Solution
Given info: The mass of the empty car is
The formula of kinetic energy at final point is,
The body is at the lowest point so the resistive force is taken upto that point only.
The formula of the energy wasted due to friction is,
Substitute
The formula to calculate the final velocity from equation (1) can be written as,
Substitute
Conclusion:
Therefore, the highest speed reached by the car is
(c)
The new values of friction force and highest speed when the weight is
(c)
Answer to Problem 25AP
The new value of friction force is
Explanation of Solution
Given info: The mass of the empty car is
The formula to calculate the
Substitute
To calculate the final velocity the equation (2) is,
Substitute
Conclusion:
Therefore, the new value of friction force is
(d)
The depth of the underground part of the ride.
(d)
Answer to Problem 25AP
The depth of the underground part of the ride is
Explanation of Solution
Consider
The formula of the potential energy at start is,
Substitute
The formula to calculate the depth is,
Substitute
Conclusion:
Therefore, the depth of the underground part of the ride is
(d)
The depth of the underground provided is feasible or not.
(d)
Answer to Problem 25AP
No, the depth of the underground provided is not feasible.
Explanation of Solution
No the depth of the underground tunnel provided is not feasible as the total length covered by the car is increased due to which the loss of energy due to friction is increased a lot as compared to the case when the underground path was not there. The non conventional forces on the car are increased due to the depth provided as the friction in the path of later
Conclusion:
Therefore, the depth of the underground provided is not feasible.
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics
- According to the provided information answer the question accorrding to grade 11 physics Jerry has decided to give up his part-time job for a new career, cat-burglar! Jerry loves the idea of dressing up like a cat all day and of course the chance of meeting Cat Woman! On Jerry's first "job" he figures out his escape plan. He travels 3.0 km south for 15 minutes and then 8.0 km west for 1.5 hours before reaching his house. Draw a sketch diagram of the path he took with all the appropriate labels.arrow_forwardPlease solve and answer all parts of the question correctly please. Thank you!!arrow_forwardPlease solve and answer this question correctly please. Thank you!!arrow_forward
- Please help me with this physics problemarrow_forwardIn a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning