Concept explainers
To summarize:
The phases of photosynthesis and describe the part where each phase occurs in chloroplast
Introduction:
Photosynthesis is an anabolic pathway in which light energy from the Sun is converted to chemical energy for use by the cell. Light energy is trapped by pigments called chlorophyll present in the chloroplasts and is converted to chemical energy during the process of photosynthesis.
Answer to Problem 22A
Photosynthesis occurs in two phases;
- Light dependent reaction- The light dependent reaction is also called light reaction. It occurs in the thylakoids of chloroplasts. First the chlorophyll absorbs light energy and this excites the electrons in photosystem II. It splits water molecule producing an electron, a hydrogen ion and oxygen as waste product. The excited electrons move from PSII to PSI through electron- acceptor molecule. PSI then transfers electrons to ferrodoxin which in turn gives electrons to carrier molecule NADP+ forming energy storage molecule NADPH. ATP is produced through electron transport chain by the process of chemiosmosis.
- Light independent reaction- This reaction occurs in stroma of chloroplasts.Also called the Calvin cycle, in this phase an enzyme RuBisCOhelps in fixing the carbon dioxide into glucose and other organic compounds.Energyis supplied by ATP and NADPH to carry out the cycle.
Explanation of Solution
There are two phases in photosynthesis:
- Light reaction- Chloroplasts have two compartments; thylakoids and stroma.
Flat sac like structures called thylakoids are arranged in stacks called grana.Light reactionsoccur in the thylakoids within the chloroplasts. First step in light reaction is absorption of light by chlorophyll present in thylakoid membranes. The energy is stored in two energy storage molecules- NADPH and ATP.Thylakoid membranes have a large surface area which provides space to hold large number of electron transporting molecules and two types of protein complexes called photosystems.Light energy is absorbed by photosystem II. It is used to split water molecule. When water splits, oxygen is released from the cell, protons ( H+ ions) stay in thylakoid space and an activated electron enters the electron transport chain. As electrons move through the membrane, protons are pumped into thylakoid space. At photosystem I electrons are re-energized and NADPH is formed.
During light reactions, ATP is produced in conjunction with electron transport by the process of chemiosmosis. The H+ ions produced by splitting of water molecules accumulate in the interior of thylakoid. Due to difference in concentration of H+ ions in the interior of thylakoid and stroma, the H+ ions diffuse down the concentration gradient through ion channels. ATP synthases help in diffusing of H+ ions. ATP synthase is an enzyme used during light reaction of photosynthesis to generate ATP. As a result of this movement, ATP is formed in the stroma.
- Calvin cycle- A fluid filled space called stroma is present outside the grana. It contains many enzymes needed for carbon fixation. Light independent reactions in phase two of photosynthesis occur in this part. This is also called Calvin cycle. The Calvin cycle occurs in stroma where enzyme RuBisCO fixes the carbon dioxide into 3- carbon molecules called 3- phosphoglycerate (3-PGA). In the next step energy is transferred from ATP and NADPH to 3- phosphoglycerate (3-PGA) to form glyceraldehyde 3- phosphates (G3P). Next two G3P molecules leave the cycle to be used for the production of glucose and other organic compounds.In the final step of the Calvin cycle, Rubisco, an enzyme converts ten G3P(glyceraldehyde 3-phosphate) molecules into 5- carbon molecules called ribulose 1,5- bisphosphates (RuBP). These molecules combine with new carbon dioxide molecules to continue the Calvin cycle.
Chapter 8 Solutions
Biology Illinois Edition (Glencoe Science)
Additional Science Textbook Solutions
Microbiology with Diseases by Body System (5th Edition)
Cosmic Perspective Fundamentals
Campbell Essential Biology (7th Edition)
Biology: Life on Earth (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Chemistry: Structure and Properties (2nd Edition)
- Explain why you chose this mutation. Begin by transcribing and translating BOTH the normal and abnormal DNA sequences. The genetic code below is for your reference. SECOND BASE OF CODON כ FIRST BASE OF CODON O THIRD BASE OF CODON SCAGUCAGUGAGUCAG UUU UUC UCU UAU UGU Phenylalanine (F) Tyrosine (Y) Cysteine (C) UCC UAC UGC Serine (S) UUA UUG Leucine (L) UCA UCG_ UAA UGA Stop codon -Stop codon UAG UGG -Tryptophan (W) CUU CUC CCU CAU CGU Histidine (H) CCC CAC CGC -Leucine (L) Proline (P) CUA CCA CAA CUG CCG CAG-Glutamine (Q) -Arginine (R) CGA CGG AUU ACU AAU AGU AUC Isoleucine (1) Asparagine (N) ACC AAC Threonine (T) AUA ACA AAA Methionine (M) Lysine (K) AUG ACG Start codon AAG AGC-Serine (S) -Arginine (R) AGA AGG GUU GCU GAU GUC GUA GUG GCC Valine (V) -Alanine (A) GCA GCG GAC GAA GAG Aspartic acid (D) GGU Glutamic acid (E) GGC GGA GGG Glycine (G) In order to provide a complete answer to the question stated above, fill in the mRNA bases and amino acid sequences by using the Genetic Code…arrow_forwardidentify the indicated cell in white arrowarrow_forwardGloeocaspa Genus - diagram a colony and label the sheath, cell wall, and cytoplasm. Oscillatoria Genus - Diagram a trichome, and label the shealth and individual cells Nostoc Genus- diagram a sketch of the colonoy microscopically from low power to the left of the drawing. Draw a filament showing intercalary heterocysts, and vegatative cells to the right of the drawing Merismopedia Genus- diagram a sketch of the colony. draw and label a filament showing the colony, cell wall, and sheath. Gloeotrichia Genus- diagram a habit sketch of the colony. draw a filament showing the heterocyst, akimetes and vegatative cells of the filamentarrow_forward
- What Genus is this?arrow_forwardAs a medical professional, it is important to be able to discuss how genetic processes such as translation regulation can directly affect patients. Think about some situations that might involve translation regulation. Respond to the following in a minimum of 175 words: Why is translation regulation important? What are some examples of translation regulation in humans? Select one of the examples you provided and explain what happens when translation regulation goes wrong.arrow_forwardThe metabolic pathway below is used for the production of the purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) in eukaryotic cells. Assume each arrow represents a reaction catalyzed by a different enzyme. Using the principles of feedback inhibition, propose a regulatory scheme for this pathway that ensures an adequate supply of both AMP and GMP, and prevents the buildup of Intermediates A through G when supplies of both AMP and GMP are adequate.arrow_forward
- QUESTION 27 Label the structures marked A, B, C and explain the role of structure A. W plasma membrane For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS ☐ Paragraph Π " ΩΘΗ Β Open Sans, a... 10pt EEarrow_forwardexamples of synamptomorphyarrow_forwardexamples of synamtomorphy.arrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education