
Concept explainers
Referto Figure 8-2. Replace the values shown with the following. Solvefor all theunknownvalues.

Solve for the unknown values in the figure.
Answer to Problem 1RQ
ET = 264.47 V | E1 = 149.87 V | E2 = 114.79 V | E3 = 143.48 V | E4 = 120.98 V |
IT = 0.6 A | I1 = 0.3186 A | I2 = 0.3186 A | I3 = 0.2813 A | I4 = 0.2813 A |
RT = 440.79 Ω | R1 = 470 Ω | R2 = 360 Ω | R3 = 150 Ω | R4 = 250Ω |
Explanation of Solution
The circuit diagram is redrawn with given data;
Description:
For the given combination circuit, total resistance will be series combination of R1 and R2 in parallel combination with series combination of R3 and R4. Calculations are shown below,
Using the current IT and resistance RT, we calculate the voltage ET
The individual voltage drops can be calculated using the voltage divider rule.
Since R1 and R2 are series connected, the same current flows through them. Hence, I1=I2
Similarly, R3 and R4 are series connected, therefore I3=I4
Conclusion:
The unknown values have been calculated using rules for combination circuit and ohm’s law.
Want to see more full solutions like this?
Chapter 8 Solutions
Delmar's Standard Textbook Of Electricity
- Problem 7 [2.5 pts] The response of an LTI system to u[n+2] appears to be the following sequence. -3-2-101234 Do we have enough information to determine the impulse response of this system? If so, derive it and plot it. If not, explain why.arrow_forwardProblem 4 5' Consider the systems S₁(x[n]) = x[n]+5[n²−1] and S2(x[n]) = x[n(n−2)]. a [2 pts] Plot the impulse responses of S₁ and S2, respectively. b [2.5 pts] Determine whether S₁ and S2 are causal. Justify your answer in details. Warning: There will be no credit for just 'yes' or 'no' answer.arrow_forward22: Line charges PL 2π nC/m are located at xy-plane as shown in Figure-1, find the electric field intensity (E) at (0, 0, 2)? 2arrow_forward
- 11.4 Determine Vout in the circuit shown in Fig. P11.4. through any methodarrow_forwardSolve the following nonlinear system using Newton's method 1 f1(x1, x2, x3)=3x₁ = cos(x2x3) - - 2 f2(x1, x2, x3) = x² - 81(x2 +0.1)² + sin x3 + 1.06 f3(x1, x2, x3) = ex1x2 +20x3 + Using x (0) X1 X2 X3 10π-3 3 = 0.1, 0.1, 0.1 as initial conditioarrow_forwardUse Newton-Raphson method to solve the system x² - 2x-y+0.5= 0 x² + 4y² 4 = 0 - with the starting value (xo,yo) = (2,0.25) and two iteration number.arrow_forward
- Reversing 3⍉ Motors using manual starters with wiring diagram of forward contacts and reverse contacts.arrow_forwardDetermine (a) the input impedance and (b) the reflectedimpedance, both at terminals (a,b) in the circuit of Fig. P11.14.arrow_forward11.4 Determine Vout in the circuit shown in Fig. P11.4.arrow_forward
- For the circuit in Fig. P11.1, determine (a) iL(t) and (b) theaverage power dissipated in RL.arrow_forwardDesign a synchronous Up/Down counter to produce the following sequence (4 9 2,0,7,6,3,1,5) using T flip-flop. The counter should count up when Up/Down =1, and down when Up/Down = 0.arrow_forwardSolve the following systems using Gauss Seidal and Jacobi iteration methods for n=8 and initial values X0=(000). - 2x16x2 x3 = -38 - -3x1 x2+7x3 = −34 -8x1 + x2 - 2x3 = -20arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





