Concept explainers
Distinguish between the terms electronegativity versus
Interpretation: The terms electronegativity versus electron affinity, covalent bond versus ionic bond and pure covalent bond versus polar covalent bond need to be distinguished. The types of bonds in terms of electronegativity difference need to be characterized. The reason for the formation of ionic and covalent bonds needs to be stated.
Concept introduction: The tendency of an atom to attract a bonding electron pair is termed electronegativity. The amount of energy released in adding an electron to a neutral atom or molecule in the gaseous state leading to the formation of a negative ion is electron affinity. The transfer of one or more electrons to a non-metal from a metal is termed as the formation of an ionic bond while a covalent bond is formed by two electrons shared between two atoms.
To determine: The distinction between the given terms the characterization of the types of bonds in terms of the electronegativity difference. The justification of the formation of an ionic and covalent bond.
Answer to Problem 1RQ
Answer
The required explanations have been rightfully stated.
Explanation of Solution
To determine: The distinction between the terms electronegativity versus electron affinity.
The tendency of an atom in a molecule by which it attracts the electrons towards itself in case of a covalent bond is termed as electronegativity. It is denoted by the symbol X. This was first proposed by Linus Pauling in the year 1932. The measurement of electronegativity is not possible directly and has to be calculated from other atomic or molecular properties.
While the energy change
To determine: The distinction between the terms covalent bond versus ionic bond
A type of chemical bond characterized by the sharing of pairs of electrons between the atoms is termed as a covalent bond.
While the ionic bond is one that is formed through the electrostatic attraction between the metal and the non-metal ions.
To determine: The distinction between the terms pure covalent bond versus polar covalent bond
When two atoms having the same electron attracting powers or electronegativities form a covalent bond, this type of bond is termed as a pure covalent bond.
And when two atoms having the different electron attracting powers or electronegativities form a covalent bond, this type of bond is termed as a polar covalent bond. In this case the displacement of the shared pair of electrons toward one of the atoms takes place.
To determine: Characterization of the types of bonds in terms of the electronegativity difference
With respect to the electronegativity difference, the formation of two binds takes place. When the electronegativity difference among the atoms exceeds 1.7, an ionic bond is formed while a covalent bond is formed if this difference is less than 1.7
To determine: The justification of the formation of an ionic and covalent bond energetically.
The formation of these two types of bonds is energetically favored as in these cases the energy of the products is somewhat less than that of the reactants resulting in the stability of the products formed.
The tendency of an atom in a molecule by which it attracts the electrons towards itself in case of a covalent bond is termed as electronegativity. The energy change when an electron is added to a neutral atom or molecule in the gaseous sate is termed electron affinity.
The chemical bond characterized by the sharing of pairs of electrons between the atoms while an ionic bond is formed through the electrostatic attraction between the metal and the non-metal ions
The atoms having the same electron attracting powers or electronegativities a pure covalent bond while the bond formed by two atoms having the different electron attracting powers is a polar covalent bond
With respect to the electronegativity difference, the formation of two binds takes place, ionic and covalent.
The energy of the products is somewhat less than that of the reactants. Hence, the formation of these two types of bonds is energetically favored.
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry (AP Edition)
- Shown below is the major resonance structure for a molecule. Draw the second best resonance structure of the molecule. Include all non-zero formal charges. H. C H H C. H H H H Click and drag to start drawing a structure. Xarrow_forwardA new brand of lotion is causing skin rush unlike the old brand of the same lotion. With the aid of well labelled diagram describe an experiment that could be done to isolate the pigment that cause the skin rusharrow_forwardDon't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 100 HS-NJ-0547 80 60 31 20 S1 84 M+ absent 10 30 40 50 60 70 80 90 100 100- MS2016-05353CM 80- 60 40 20 135 137 S2 164 166 0-m 25 50 75 100 125 150 m/z 60 100 MS-NJ-09-43 40 20 20 80 45 S3 25 50 75 100 125 150 175 m/zarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Predicting the pro Predict the major products of this organic reaction. Explanation Check m ☐ + 5 1.03 Click and drag t drawing a stru 2. (CH₂)₂S 3 2 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardstarting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... X Explanation Check C टे Br T Add/Remove step ☐ Br Br © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacarrow_forwardDon't used hand raitingarrow_forward
- Relative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 100 HS-NJ-0547 80 60 31 20 S1 84 M+ absent 10 30 40 50 60 70 80 90 100 100- MS2016-05353CM 80- 60 40 20 135 137 S2 164 166 0-m 25 50 75 100 125 150 m/z 60 100 MS-NJ-09-43 40 20 20 80 45 S3 25 50 75 100 125 150 175 m/zarrow_forwardPart II. Given two isomers: 2-methylpentane (A) and 2,2-dimethyl butane (B) answer the following: (a) match structures of isomers given their mass spectra below (spectra A and spectra B) (b) Draw the fragments given the following prominent peaks from each spectrum: Spectra A m/2 =43 and 1/2-57 spectra B m/2 = 43 (c) why is 1/2=57 peak in spectrum A more intense compared to the same peak in spectrum B. Relative abundance Relative abundance 100 A 50 29 29 0 10 -0 -0 100 B 50 720 30 41 43 57 71 4-0 40 50 60 70 m/z 43 57 8-0 m/z = 86 M 90 100 71 m/z = 86 M -O 0 10 20 30 40 50 60 70 80 -88 m/z 90 100arrow_forwardPart IV. C6H5 CH2CH2OH is an aromatic compound which was subjected to Electron Ionization - mass spectrometry (El-MS) analysis. Prominent m/2 values: m/2 = 104 and m/2 = 9) was obtained. Draw the structures of these fragments.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning