Concept explainers
Distinguish between the terms electronegativity versus

Interpretation: The terms electronegativity versus electron affinity, covalent bond versus ionic bond and pure covalent bond versus polar covalent bond need to be distinguished. The types of bonds in terms of electronegativity difference need to be characterized. The reason for the formation of ionic and covalent bonds needs to be stated.
Concept introduction: The tendency of an atom to attract a bonding electron pair is termed electronegativity. The amount of energy released in adding an electron to a neutral atom or molecule in the gaseous state leading to the formation of a negative ion is electron affinity. The transfer of one or more electrons to a non-metal from a metal is termed as the formation of an ionic bond while a covalent bond is formed by two electrons shared between two atoms.
To determine: The distinction between the given terms the characterization of the types of bonds in terms of the electronegativity difference. The justification of the formation of an ionic and covalent bond.
Answer to Problem 1RQ
Answer
The required explanations have been rightfully stated.
Explanation of Solution
To determine: The distinction between the terms electronegativity versus electron affinity.
The tendency of an atom in a molecule by which it attracts the electrons towards itself in case of a covalent bond is termed as electronegativity. It is denoted by the symbol X. This was first proposed by Linus Pauling in the year 1932. The measurement of electronegativity is not possible directly and has to be calculated from other atomic or molecular properties.
While the energy change
To determine: The distinction between the terms covalent bond versus ionic bond
A type of chemical bond characterized by the sharing of pairs of electrons between the atoms is termed as a covalent bond.
While the ionic bond is one that is formed through the electrostatic attraction between the metal and the non-metal ions.
To determine: The distinction between the terms pure covalent bond versus polar covalent bond
When two atoms having the same electron attracting powers or electronegativities form a covalent bond, this type of bond is termed as a pure covalent bond.
And when two atoms having the different electron attracting powers or electronegativities form a covalent bond, this type of bond is termed as a polar covalent bond. In this case the displacement of the shared pair of electrons toward one of the atoms takes place.
To determine: Characterization of the types of bonds in terms of the electronegativity difference
With respect to the electronegativity difference, the formation of two binds takes place. When the electronegativity difference among the atoms exceeds 1.7, an ionic bond is formed while a covalent bond is formed if this difference is less than 1.7
To determine: The justification of the formation of an ionic and covalent bond energetically.
The formation of these two types of bonds is energetically favored as in these cases the energy of the products is somewhat less than that of the reactants resulting in the stability of the products formed.
The tendency of an atom in a molecule by which it attracts the electrons towards itself in case of a covalent bond is termed as electronegativity. The energy change when an electron is added to a neutral atom or molecule in the gaseous sate is termed electron affinity.
The chemical bond characterized by the sharing of pairs of electrons between the atoms while an ionic bond is formed through the electrostatic attraction between the metal and the non-metal ions
The atoms having the same electron attracting powers or electronegativities a pure covalent bond while the bond formed by two atoms having the different electron attracting powers is a polar covalent bond
With respect to the electronegativity difference, the formation of two binds takes place, ionic and covalent.
The energy of the products is somewhat less than that of the reactants. Hence, the formation of these two types of bonds is energetically favored.
Want to see more full solutions like this?
Chapter 8 Solutions
EBK CHEMISTRY
- 36) Complete the following multi-step reactions showing applications of enolate ions arising from ketones, esters, malonic ester, and keto ester, etc. (30 pts) (1) A NaOH, H₂O+ heat A NaOEt EtO OEt (11) EOH, H+ H. B LDA, H₂O+ -78°C B (i) NaOMe, Et-Br (ii) H₂O+, heat EtOOC (III) COOEt B A (i) NaOEt LiAlH 4-bromo-2-butene H₂O+ (ii) H3O+, heat Write the mechanism for Aldol Condensation (I A or B), and Claisen Condensation (II A).arrow_forward31) Complete two sets of reactions involving (R)-4-methyl-pent-2-ol producing racemic mixture of tertiary alcohols (D) and ketone derivative (C). Illustrate the mechanism of B and C or D. (25 pts) O OH 0 K2Cr2O7 Ph-CH2-Br, Mg, H2SO4 THF, H3O* (A) (D) Racemic mixture TsCl, Py (B) KCN, DMSO Ph-CH2-Br, Mg, THF, H3O+ (C) Mechanism for reactions B and C:arrow_forwardManoharan Mariappan, Ph.D., Dept. of Natur. Sci., NFC, Tallahassee, FL 33) Synthesize the aromatic compound containing para-substituted carbonyl compound starting from benzene. Illustrate the mechanism for reaction A. 1) NU (25 pts) A FeCl B (i) HNO3, H2SO4 (II) Sn, HCl(aq) NH₂ NO₂-D NH₂ (i) MeCO2Me, heat C (ii) K2Cr2O7/H2SO4 D (ii) SOCl2 (iii) 2 Et-NH2 Mechanism for reaction for the nitration of alkyl benzene (B-i): Characterize the product compound arising from the reaction D by IR and IH NMR spectral data: IR data (cm): 'H NMR data: Draw the structure and assign the chemical shift with the spin-splitting.arrow_forward
- Write structural formulas for the major products by doing addition reactions 1. You must add H2 as Pt is catalyst it does not take part in reactions only speed up the process H₂ CH2=CH-CH3 Pt 2. Add HCI break it into H and Cl CH3 HCI 3. Add Br2 only CC14 is catalyst CH3-CH=CH2 B12 CCl4 4. Add water to this and draw major product, H2SO4 is catalyst you have add water H20 in both the reaction below H₂SO4 CH3-CH=CH2 CH3 H2SO4/H₂O CH3-C=CH2 reflux ?arrow_forwardPlan the synthesis of the following compound using the starting material provided and any other reagents needed as long as carbon based reagents have 3 carbons or less. Either the retrosynthesis or the forward synthesis (mechanisms are not required but will be graded if provided) will be accepted if all necessary reagents and intermediates are shown (solvents and temperature requirements are not needed unless specifically involved in the reaction, i.e. DMSO in the Swern oxidation or heat in the KMnO4 oxidation). H Harrow_forwardHint These are benzene substitution reactions. ALCI3 and UV light are catalyst no part in reactions and triangle A means heating. A. Add ethyl for Et in benzene ring alkylation reaction EtCl = CH3CH2CL 1) EtC1 / AlCl3 / A ? B: Add Br to benzene ring ( substitution) 2) Br₂ / uv light ? C Add (CH3)2 CHCH2 in benzene ring ( substitution) (CH3)2CHCH,C1 / AICI, ?arrow_forward
- Draw the mechanism to make the alcohol 2-hexanol. Draw the Mechanism to make the alcohol 1-hexanol.arrow_forwardDraw the mechanism for the formation of diol by starting with 1-pentanal in... basic conditions then acidic conditions then draw the mechanism for the formation of a carboxylic acid from your product.arrow_forwardIdentify each chiral carbon as either R or S. Identify the overall carbohydrates as L or Darrow_forward
- Ethers can be formed via acid-catalyzed acetal formation. Draw the mechanism for the molecule below and ethanol.arrow_forwardHOCH, H HO CH-OH OH H OH 11 CH₂OH F II OH H H 0 + H OHarrow_forwardDraw the mechanism for the formation of diol by starting with one pen and all in... basic conditions then acidic conditions then draw the mechanism for the formation of a carboxylic acid from your product.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





