
(a)
Find the initial current in each branch of the circuit using PSPICE.
(a)

Answer to Problem 1P
The initial current through resistor, inductor, and capacitor are
Explanation of Solution
Given data:
Refer to Figure given in the textbook.
The circuit parameters are given as follows:
The initial current through the inductor
The initial voltage across the capacitor
Calculation:
As the inductor, capacitor, and resistor are connected in parallel, the initial voltage across each parallel elements are the same. Therefore,
The initial current flowing through the resistor is,
Substitute 25 for
The initial current through the inductor is,
The initial current across the capacitor is,
Substitute
Conclusion:
Thus, the initial current through resistor, inductor, and capacitor are
(b)
Find the value of
(b)

Answer to Problem 1P
The value of
Explanation of Solution
Formula used:
Write the condition for over-damped response for a parallel RLC circuit as follows:
Here,
Write the condition for under-damped response for a parallel RLC circuit as follows:
Write the condition for critically damped response for a parallel RLC circuit as follows:
Write the expression for resonant radian frequency for the given circuit as follows:
Here,
Write the expression for neper frequency for the given circuit as follows:
Here,
Write the expression of required voltage response
Write the general expression for
Write the general expression for damping constant
Write the general expression to find the value of
Calculation:
Substitute 125 for
Substitute 200 m for
Substitute 800 for
The expression (2) is satisfied. Therefore, the response is the under-damped response.
Substitute 1000 for
Substitute 25 V for
Substitute 800 for
Substitute 25 for
For various values of t in the above equation the values are calculated and tabulated in Table 1 as follows.
Table 1
Time t in seconds | Voltage |
0.001 | 26.186 |
0.002 | 14.374 |
0.003 | 5.374 |
0.004 | 1.084 |
0.005 | |
0.006 | |
0.007 | |
0.008 |
PSPICE Circuit:
Draw the given circuit diagram in PSPICE as shown in Figure 1.
Provide the simulation settings as shown in Figure 2.
Now, run the simulation and the output will be as shown below.
Output:
TIME V(N00117)
0.000E+00 2.500E+01
1.000E-03 2.621E+01
2.000E-03 1.441E+01
3.000E-03 5.382E+00
4.000E-03 1.065E+00
5.000E-03 -2.932E-01
6.000E-03 -4.354E-01
7.000E-03 -2.627E-01
8.000E-03 -1.067E-01
9.000E-03 -2.581E-02
The simulated output and the calculated values in Table 1 are approximately equal and verified.
Conclusion:
Thus, the value of
(c)
Find the value of
(c)

Answer to Problem 1P
The value of
Explanation of Solution
Formula used:
Write the expression for
Write the expression for
Write the expression for
Calculation:
Substitute
Substitute
Substitute
Conclusion:
Thus, the value of
Want to see more full solutions like this?
Chapter 8 Solutions
Electric Circuits, Global Edition
- The circuit shown in Fig. P12.41 was introduced inProblem 5.68. Then, a time-domain solution was sought foruout1 (t) and uout2 (t) for t ≥ 0, given that ui(t) = 10u(t) mV,VCC = 10 V for both op amps, and the two capacitors had nochange prior to t = 0. Analyze the circuit and plot uout1 (t) anduout2 (t) using the Laplace transform technique.arrow_forward12.43 For the circuit shown in Fig. P12.43, determine uout(t)given that R1 = 1 kW, R2 = 4 kW, and C = 1 μF, and(a) us(t) = 2u(t) (V),(b) us(t) = 2cos(1000t) (V),(c) us(t) = 2e−t u(t) (V).arrow_forwardPlease explain each step clearly, show your work.I am most confused on how to move the disturbance T_d(s) Thank you, I will give positive feedbackarrow_forward
- Please do question 3 and 4 of this question, the first part is submitted as a separate question due to the limit. Thank you, I will give positive feedback. Please explain each step clearlyarrow_forwardIf the circuit shown in Fig. P12.38(a) is excited by thecurrent waveform is(t) shown in Fig. P12.38(b), determine i(t)for t ≥ 0, given that R1 = 10 W, R2 = 5 W, and C = 0.02 F.arrow_forwardPlease explain each step clearly and include a proper image of what the block diagram and plot must look like. thank youarrow_forward
- A three-phase, 480-V, 60-Hz, 6-pole, Y-connected induction motor has its speed controlled by slip power. The circuit parameters are given: Rs=0.06 ohms, Rr=0.05 ohms, Xs=0.2 ohms, Xr=0.3 ohms and Xm=6 ohms. The turn ratio of the rotor to stator winding is n=0.8. The no-load losses of the motor are equal to 150 W. The rotor and stator cupper losses are equal to 249.21 W. The slip power losses are estimated to 8000W. The load torque is 173.61 N.m. at 700 rpm. The efficiency is equal to: Select one: a. 71.5% b. None of these c. 81.5% d. 91.5%arrow_forwardQuestion 1: A 3 phase, 10 kW, 1700 rpm, Y- connected 460 V, 60 Hz, 4 poles, Y-connected induction motor has the following parameters: Rr = 0.2 ohms, Xs = 0.8 ohms, Xr = 0.8 ohms, Xm = 20 ohms. The no load losses are neglected. The rotor speed is assumed to be constant equal to 1700 rpm. The V/F control method is applied. The stator resistance is negligible. If the base synchronous speed is 188.5 rad/s and the voltage frequency ratio is 1.405, then the maximum torque Tm and the corresponding speed w at 30 Hz are equal to: Select one: a. 350 N.m and 70.69 rad/s b. None of these c. 350 N.m and 164.94 rad/s d. 700 N.m and 164.94 rad/s Question 2: A 3 phase, 10 kW, 1750 rpm, Y- connected 460 V, 60 Hz, 4 poles, Y-connected induction motor has the following parameters: Rs = 0.5 Ohms, Rr = 0.3 Ohms, Xs = 0.9 Ohms, Xr = 0.9 Ohms, Xm = 25 Ohms. The no load losses are neglected. In this type of control the developed torque is proportional to the square of the statoric voltage. In this part, the…arrow_forwardPlease explain each question vlearly and explain how to do it. Thank you, I will give pos feedbackarrow_forward
- Don't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forward12.43 For the circuit shown in Fig. P12.43, determine Vout (1) given that R₁ = 1 kQ, R₂ = 4k, and C = 1 μF, and (a) v(t)=2u(1) (V), (b) s(t)=2 cos(10001) (V), (c) vs(t) = 2e u(t) (V). R1 Us(1) + R2 Dout(1) Figure P12.43 Op-amp circuit for Problem 12.43.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





