College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 1P
To determine
To find: The reading on each of the scales.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Shown is, a 70 kg man walks out on a 10 kg beam that rests on, but is not attached to, two supports. When the beam just starts to tip, what is the force exerted on the beam by the right support?
The arm in Figure P8.17 weighs 41.5 N. The force of
gravity acting on the arm acts through point A. Determine the
magnitudes of the tension force F, in the deltoid muscle and
the force F, exerted by the shoulder on the humerus (upper-
arm bone) to hold the arm in the position shown.
F,
12°
F,
'0.080 m
-0.290 m
Figure P8.17
A 25.0 kg floodlight in a park is supported at the end of a horizontal beam of negligible mass that is hinged to a pole, as
shown in Figure P8.22. A cable at an angle of 30.0° with the beam helps to support the light.
30,0%
Figure P8.221
(a) Find the tension in the cable.
N
(b) Find the horizontal and vertical forces exerted on the beam by the pole.
horizontal
N (to the right)
vertical
N (upward)
Chapter 8 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 8 - Prob. 1CQCh. 8 - Could a ladder on a level floor lean against a...Ch. 8 - Prob. 3CQCh. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - Prob. 7CQCh. 8 - A spring exerts a 10 N force after being stretched...Ch. 8 - Prob. 9CQCh. 8 - A typical mattress has a network of springs that...
Ch. 8 - Take a spring and cut it in half to make two...Ch. 8 - A wire is stretched right to its breaking point by...Ch. 8 - Prob. 13CQCh. 8 - Prob. 14CQCh. 8 - Steel nails are rigid and unbending. Steel wool is...Ch. 8 - Two children hold opposite ends of a lightweight,...Ch. 8 - Prob. 19MCQCh. 8 - Prob. 20MCQCh. 8 - Prob. 21MCQCh. 8 - Prob. 22MCQCh. 8 - Prob. 23MCQCh. 8 - Prob. 24MCQCh. 8 - Prob. 25MCQCh. 8 - Prob. 26MCQCh. 8 - You have a heavy piece of equipment hanging from a...Ch. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Youre carrying a 3.6-m-long, 25 kg pole to a...Ch. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Prob. 9PCh. 8 - Prob. 11PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - The stability of a vehicle is often rated by the...Ch. 8 - Prob. 18PCh. 8 - A car manufacturer claims that you can drive its...Ch. 8 - Prob. 20PCh. 8 - An orthodontic spring, connected between the upper...Ch. 8 - Prob. 22PCh. 8 - Experiments using optical tweezers measure the...Ch. 8 - Prob. 24PCh. 8 - One end of a 10-cm-long spring is attached to the...Ch. 8 - Prob. 26PCh. 8 - A spring has an unstretched length of 10 cm. It...Ch. 8 - A spring stretches 5.0 cm when a 0.20 kg block is...Ch. 8 - You need to make a spring scale to measure the...Ch. 8 - Prob. 30PCh. 8 - A force stretches a wire by 1.0 mm. a. A second...Ch. 8 - Prob. 32PCh. 8 - What hanging mass will stretch a 2.0-m-long,...Ch. 8 - An 80-cm-long, 1.0-mm-diameter steel guitar string...Ch. 8 - A mineshaft has an ore elevator hung from a single...Ch. 8 - The normal force of the ground on the foot can...Ch. 8 - A three-legged wooden bar stool made out of solid...Ch. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - A glass optical fiber in a communications system...Ch. 8 - The Achilles tendon connects the muscles in your...Ch. 8 - Prob. 44PCh. 8 - Prob. 47PCh. 8 - Prob. 48PCh. 8 - Prob. 49PCh. 8 - Prob. 51GPCh. 8 - Prob. 52GPCh. 8 - Prob. 53GPCh. 8 - Prob. 55GPCh. 8 - Two identical, side-by-side springs with spring...Ch. 8 - Prob. 57GPCh. 8 - Prob. 58GPCh. 8 - Prob. 59GPCh. 8 - A 25 kg child bounces on a pogo stick. The pogo...Ch. 8 - Prob. 61GPCh. 8 - In the hammer throw, an athlete spins a heavy mass...Ch. 8 - There is a disk of cartilage between each pair of...Ch. 8 - Orb spiders make silk with a typical diameter of...Ch. 8 - Larger animals have sturdier bones than smaller...Ch. 8 - Prob. 67GPCh. 8 - Prob. 68GPCh. 8 - Prob. 69MSPPCh. 8 - Prob. 70MSPPCh. 8 - Prob. 71MSPPCh. 8 - Prob. 72MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Children playing pirates have suspended a uniform wooden plank with mass 15.0 kg and length 2.50 m as shown in Figure P14.27. What is the tension in each of the three ropes when Sophia, with a mass of 23.0 kg, is made to walk the plank and is 1.50 m from reaching the end of the plank? FIGURE P14.27arrow_forwardWhen you carry shopping bags, rather than grasp the handles with your hand as in Q8.14a, you might choose to put them over your arm and slide the handle toward your elbow as in Q8.14b. Explain why this leads to less muscle effort to carry the bags and less force in your elbow joint.arrow_forwardA 3.0-m-long rigid beam with a mass of 100 kg is supported at each end, as shown. An 80 kg student stands 2.0 m from support 1. How much upward force does each support exert on the beam?arrow_forward
- The two ends of the barbell shown are made of the same material. Which of the points shown is at the barbell’s center of gravity?arrow_forwardQ8 A meter stick balances horizontally on a knife-edge at the 50.0 cm mark. With two 3.62 g coins stacked over the 30.9 cm mark, the stick is found to balance at the 38.4 cm mark. What is the mass of the meter stick?arrow_forwardThe chewing muscle, the masseter, is one of the stron- gest in the human body. It is attached to the mandible (lower jawbone) as shown in Figure P8.33a. The jawbone is pivoted about a socket just in front of the auditory canal. The forces acting on the jawbone are equivalent to those acting on the curved bar in Figure P8.33b. F. is the force exerted by the food being chewed against the jawbone, T is the force of ten- sion in the masseter, and R is the force exerted by the socket on the mandible. Find T and R for a person who bites down on a piece of steak with a force of 50.0 N. 3.50 cm – 7.50 cm Masseter Mandible Б a Figure P8.33arrow_forward
- The large quadriceps muscle in the upper leg ter- Quadriceps - Tendon minates at its lower end in a - Tibia tendon attached to the upper end of the tibia (Fig. P8.35a). The forces on the lower leg when the leg is extended are modeled as in Figure P8.35b, where T is the force of ten- a sion in the tendon, w is the force of gravity acting on the lower leg, and F is the force of gravity acting on the foot. Find T when the ten- 25.0° T don is at an angle of 25.0° with the tibia, assuming that w = 30.0 N, F = 12.5 N, and the leg is extended at an angle 0 of 40.0° with the ver- Figure P8.35 tical. Assume that the center of gravity of the lower leg is at its center and that the tendon attaches to the lower leg at a point one-fifth of the way down the leg. 13arrow_forwardA. Who should sit farther from the center of a uniform seesaw, a 93-kg man or his 33-kg son, for the seesaw to remain in a horizontal position? Explain. B. Illustrate the figure and solve the problem by showing complete solution. Ella weighing 225 N sits at one end of a see-saw 4 m long. If Omar sits opposite her 150 cm away from the center, they balance each other. What is the weight of Omar? ( Disregard the weight of the seesaw)arrow_forwardHow close to the right edge of the 56 kg picnic table shown can a 70 kg man stand without the table tipping over? Hint: When the table is just about to tip, what is the force of the ground on the table’s left leg?arrow_forward
- T3.8 Please help me answer this physics question.arrow_forwardWhen a person stands on tiptoe (a strenuous position), the position of the foot is as shown in Figure P8.24a. The total gravitational force on the body, F, is supported by the force n exerted by the floor on the toes of one foot. A mechanical model of the situation is shown in Figure P8.24b, where T is the force exerted by the Achilles tendon on the foot and R is the force exerted by the tibia on the foot. Find the values of T, R, and 0 when F, = n = 700. N. -Achilles tendon Tibia 15.0° 18.0 cm 25.0 cm Figure P8.24arrow_forwardA 40.0 kg boy sits on a seesaw 3.0 m away from the pivot point. The mass of the wooden plank is 5.0 kg. A 30 kg boy sits opposite the 40.0 kg boy to balance the seesaw. What is the normal force exerted by the pivot point? g = 9.8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning