Concept explainers
Interpretation:
The facts related to the resonance stabilization of benzene, heat of hydrogenation and fuel value of benzene and acetylene are to be determined; also the experiment to prove the existence of resonance in cyclooctatetraene is to be determined.
Concept Introduction:
The enthalpy change of the combustion reaction is calculated by the difference of sum of the enthalpy change of products and reactants.
(a)
To determine:
The comparison of heat of hydrogenation of benzene and acetylene and the greater fuel value out of
Explanation of Solution
The heat of hydrogenation of acetylene is
The heat of hydrogenation of benzene is
The fuel value of acetylene is higher than benzene which is consistent with the stability of benzene.
Step 1:
To determine:
The heat of hydrogenation and fuel value of
Answer to Problem 1DE
Solution:
The heat of hydrogenation of acetylene is
Explanation of Solution
The balanced chemical equation for the combustion of acetylene is,
The enthalpy change of the given reaction is calculated by the formula,
Substitute the values of
The fuel value of acetylene is calculated by dividing its standard enthalpy change by the mass.
Step 2:
To determine:
The heat of hydrogenation and fuel value of
Answer to Problem 1DE
Solution:
The heat of hydrogenation of benzene is
Explanation of Solution
The balanced chemical equation for the combustion of benzene is,
The enthalpy change of the given reaction is calculated by the formula,
Substitute the values of
The fuel value of benzene is calculated by dividing its standard enthalpy change by the mass.
Since, the fuel value of benzene is less than that of acetylene. Therefore, benzene ring is especially stable and not gets easily oxidized. Thus, the calculations of heat of hydrogenation and fuel value are consistent with the extra stabilization of benzene.
The heat of hydrogenation of acetylene is
The heat of hydrogenation of benzene is
The fuel value of acetylene is higher than benzene which is consistent with the stability of benzene.
(b)
To determine:
The heat of hydrogenation and fuel value of toluene.
Answer to Problem 1DE
Solution:
The heat of hydrogenation of toluene is
Explanation of Solution
The balanced chemical equation for the combustion of benzene is,
The enthalpy change of the given reaction is calculated by the formula,
Substitute the values of
The fuel value of benzene is calculated by dividing its standard enthalpy change by the mass.
The heat of hydrogenation of toluene is
(c)
To determine:
The explanation of stabilization of benzene by using the given values of heat of hydrogenation.
Answer to Problem 1DE
Solution:
The heat of hydrogenation for benzene is more than cyclohexane because benzene is more stable and it requires more energy to break its bonds.
Explanation of Solution
Given
The heat of hydrogenation of benzene to make cyclohexane is
The heat of hydrogenation of cyclohexene to make cyclohexane is
The heat of hydrogenation is the energy required to break the carbon-hydrogen bonds in the molecule. More is the heat of hydrogenation; more is the stability of the molecule. Since, the heat of hydrogenation of benzene is more than that of the cyclohexene. Therefore, the benzene is more stable than that of the cyclohexene.
The heat of hydrogenation for benzene is more than cyclohexane because benzene is more stable and it requires more energy to break its bonds.
(d)
To determine:
The explanation of resonance and stability of benzene on the basis of bond lengths and bond angles.
Answer to Problem 1DE
Solution:
The bond lengths and bond angle in benzene are all equal which confirms the existence of phenomenon of resonance in the molecule.
Explanation of Solution
The pi electrons present in the benzene ring is delocalized among all the carbon atoms of the ring. Due to this the bond lengths and bond angles of all carbon-carbon bonds are equal which proves the delocalized bonding in the ring. Therefore, the bond lengths and bond angles are sufficient to decide the existence of resonance and stability in the structure.
The bond lengths and bond angle in benzene are all equal which confirms the existence of phenomenon of resonance in the molecule.
(e)
To determine:
The experiment to prove the existence of resonance in cyclo octatetraene.
Answer to Problem 1DE
Solution:
The NMR spectrum of cyclo octatetraene proves that this molecule does not exhibit the phenomenon of resonance.
Explanation of Solution
The NMR spectrum of the given sample is the measure of number of hydrogen nuclei in the molecule. The number of peaks present in the NMR spectrum decides the types of nucleus present in the structure. The given structure of cyclooctatetraene contains two types of protons present in the structure having two different bond lengths. Therefore, the pheneomenon of resonance does not exhibit in this structure.
The NMR spectrum of cyclooctatetraene proves that this molecule does not exhibit the phenomenon of resonance.
Want to see more full solutions like this?
Chapter 8 Solutions
Laboratory Experiments for Chemistry: The Central Science (14th Edition)
- 4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forwardThe following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward
- 1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forwardThe following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forwardSelect all possible products from the following reaction: NaOH H₂O a) b) ОН HO O HO HO e) ОН f) O HO g) h) + OHarrow_forward
- 3. Draw diagrams to represent the conjugation in these molecules. Draw two types of diagram: a. Show curly arrows linking at least two different ways of representing the molecule b. Indicate with dotted lines and partial charges (where necessary) the partial double bond (and charge) distribution H₂N* H₂N -NH2arrow_forwardQuestion 2 of 25 point Question Attempt 3 of Ulimited Draw the structure for 3-chloro-4-ethylheptane. Part 2 of 3 Click and drag to start drawing a structure. Draw the structure for 1-chloro-4-ethyl-3-lodooctane. Click and drag to start drawing a structure. X G X B c Part 3 of 30 Draw the structure for (R)-2-chlorobutane. Include the stereochemistry at all stereogenic centers. Check Click and drag to start drawing a structure. G X A 。 MacBook Pro G P Save For Later Submit Assignment Privacyarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- In a silicon and aluminum alloy, with 12.6% silicon, what are the approximate percentages of the phases present in the constituent that is formed at the end of solidification? Temperature (°C) 1500 1000 L B+L 1415- α+L 577' 500 1.65 12.6 99.83 α+B B 0 Al 20 40 60 Weight percent silicon 80 Siarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY