
Effect on cycle length due to

Answer to Problem 18P
Cycle length value increases with
Explanation of Solution
Given data:
Calculation:
Evaluating equivalent hourly flow −
Similarly, evaluating equivalent hourly flow for all traffic movements −
Table 1
Approach (width) | N (56ft) | S (56ft) | E (68ft) | W (68ft) |
Left turn | 133/0.95 = 140 | 73/0.95 = 77 | 168/0.95 = 177 | 134/0.95 = 142 |
Through movement | 443 | 393 | 593 | 544 |
Right turn | 148 | 143 | 178 | 188 |
Conflicting pedestrian volume | 948 | 1264 | 1264 | 948 |
Assuming lane configuration as one dedicated left turn and combined through and right lane −
Table 2
Approach | N | S | E | W |
Left | 140 | 77 | 177 | 142 |
Through + Right | 589 (442+147) | 535 (393+178) | 771 (593+178) | 730 (543+187) |
Assume a phase scheme and find critical ratios(
Table 3
- | Phase lE-W (Left) | Phase llE-W (Through) | Phase lllN-S (Left) | Phase lVN-S (Through) |
177 | 771 | 140 | 589 | |
1000 | 3000 (1600+1400) | 1000 | 3000 (1600+1400) | |
0.177 | 0.257 | 0.140 | 0.196 |
Sum of critical ratios −
Assuming lost time per phase (
So, Total lost time −
Now, determining the optimum cycle length −
(Cycle lengths are generally multiple of
Finding Total effective green time −
Effective time for phase
For Phase l
(Assuming yellow time as
For Phase ll
For Phase lll
For Phase lV
Table 4
Phase | Allocated green & yellow time (in sec) |
Total cycle length
Green time required for pedestrian crossing can be calculated as following formula:
(Assuming the crosswalk width as
Where,
Calculating
Calculating minimum time required (
Minimum time required for N approach (
Minimum time required for S approach (
Minimum time required for E approach (
Minimum time required for W approach (
Table 5
Phase | Minimum green time (in sec) |
Sum of green and yellow time is given by,
Total cycle length is given by,
Now increasing the pedestrian volume with
Table 6
New conflicting pedestrian volume | 1138 | 1517 | 1517 | 1138 |
According to the new pedestrian volume calculating minimum time required by pedestrian for each approach:
Calculating
Calculating new minimum time required (
Minimum time required for N approach (
Minimum time required for S approach (
Minimum time required for E approach (
Minimum time required for W approach (
Comparing the
Selecting greater values in between both
Table 7
Phase | New minimum green time (in sec) |
Sum of green and yellow time is given by,
Total new cycle length is given by,
Conclusion:
With using pedestrian volume flow rate
Want to see more full solutions like this?
Chapter 8 Solutions
Traffic And Highway Engineering
- 8-42. Determine the displacement at point D. Use the principle of virtual work. El is constant. 60 kN 2m- 2 m B 30 kN/m 3 marrow_forwardTwo monitoring wells are spaced 500 m apart along the direction of groundwater flow in a confined aquifer 30.0 m thick. The difference in water level in the wells is 2.5 m. The hydraulic conductivity is 40 m/d. a) Sketch the aquifer and wells and label distances and direction of groundwater flow. b) If the real velocity of the groundwater is 0.6 m/d, what is the porosity? c) If it takes 10 years for a petroleum hydrocarbon plume to appear in the second well, what was the retardation factor?arrow_forward9. 0000) Water in a lake contains 10.5 ppb of vinyl chloride, which has a potency factor of 2.3 (mg/kg-d) 1 a. What is the incremental cancer risk for children (average weight of 15 kg) who may ingest 0.05 L of water per day while playing in the water every summer (for approximately 60 days) for 10 years? b. Is this risk acceptable? Why or why not?arrow_forward
- 8-37. Determine the displacement of point C. Use the method of virtual work. El is constant. -12 ft- 3 k/ft -12 ft- Barrow_forward6. If the initial DO concentration of a diluted (1/50) wastewater sample is 9.0 mg/L and the UO concentration decreases to 2.4 mg/L after 5 days of incubation, a. calculate the 5-day BOD concentration in mg/L: b. If the wastewater degrades at a rate of 0.22/day, what is the ultimate BOD concentration? c. Based on the k value in part (b), what would the BOD concentration be after 10 days? d. What other factor may influence the BOD that is not accounted for in part (c)?arrow_forward2nYour consulting firm is doing an expansion project for a drinking water treatment plant in a growing urban area that has a current population of 55,000 people and treats 20 MGD. If there is 2.8% population growth, continuously compounded, and you want the expansion to be able to serve the urban area for the 35 year design life of the upgraded facility, what should the new design capacity (in MGD) of the treatment plant be?arrow_forward
- can you show me step for step?arrow_forwardHow many steel studs are needed in total ? (Exterior walls are exsisting) Studs are spaced 16” OC Add 2 studs x each door & intersection How many 4 x 8 drywall sheets are required if walls are 8 ft high Exterior walls only need drywall on interior side Interior walls need drywall on both sides Show all workarrow_forwardanswer on paper and make sure work is done step by step correctly and neatlyarrow_forward
- Ex 11: Design inlet system for the road in figure below with catchment area=86 m*239 m. C=0.8, i=100 mm/hr, Gutter data: y max.=8cm, n=0.018, k=0.38, slope=%1, Z=25, %25 clogging, (space=bar=2 cm). Inlet type used (consists of tow part curb and Q grad inlet =0.6Qgutter max. grade inlet) Q curb inlet =0.4Qgutter max. 0.8*100 3600*1000 Solution: (Qs) Total=CIA= Qgutter (Max.)=k²√√s y8/3 = 0.38- 25 0.018 *(86*239)=0.457 m³/s √0.01 0.088/3= 0.0627 m³/s 30 m 12 m 2mL 12 m 30 m Residence 30 m Streat 12 m Bof 2 m ㅈ 239 m A2 A1arrow_forward(20 02 A concrete beam of rectangular cross-section (300 x 400) mm is Prestressed with wires located at (30) mm from the top of the beam .The wires are initially tensioned to 0-6 mm) diameter wires at (100) mm from the soffit of the beam and (5-6 mm) a stress of (900 N/mm²). Compute the percentage loss of stress in steel after transfer due to elastic deformation of concrete. Given: Es=200 x 103 N/mm², Ec = 25 x 10³ N/mm². 300 за 60000 400 100 546 2046arrow_forwardReinforced Concrete Design First Monthly Exam 24/02/2 Q1. A simply supported rectangular beam (300 x 400) mm and span (12) m with live load of from the soffit of the beam. Compute the stresses at mid-span of beam for the following (5 kN/m). At the centre of the beam the prestressing force of (120) kN is located at (50 mm) conditions: (a) Prestress + self- weight of beam (initial stage). (b) Prestress + self- weight of beam + Live Load (service stage). 3:00 400 120 K * 12m 5kN/m. 120 KNarrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
