Concept explainers
(a)
The potential energy at top and the bottom and the change in potential energy.
(a)
Answer to Problem 17PQ
The potential energy at bottom is
Explanation of Solution
The diagram for the position of the child is given in figure 1.
Figure 1
Write the equation of potential energy at bottom.
Here,
Write the equation of potential energy at top.
Here,
Write the expression for the top height.
Here,
Rewrite the expression from equation (II).
Write the expression for the change in potential energy.
Here,
Conclusion:
Substitute
Thus, The potential energy at bottom is
Substitute
Thus, the potential energy at top is
Substitute
Thus, the change in potential energy is
(b)
The potential energy at top and the bottom and the change in potential energy by choosing the top of the slide as reference frame.
(b)
Answer to Problem 17PQ
The potential energy at top is
Explanation of Solution
Write the equation of potential energy at bottom.
Here,
Write the equation of potential energy at bottom.
Here,
Write the expression for the bottom height.
Here,
Rewrite the expression from equation (I).
Write the expression for the change in potential energy.
Here,
Conclusion:
Substitute,
Thus, The potential energy at top is
Substitute,
Thus, the potential energy at bottom is
Substitute,
Thus, the change in potential energy is
Want to see more full solutions like this?
Chapter 8 Solutions
Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics
- What is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter? 0.445 ΧΩarrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forward
- Show that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning