
Concept explainers
(a)
To identify: The charge on the ion of Aluminum.
(a)

Answer to Problem 16PEB
Solution:
The charge on the ion of Aluminum is
Explanation of Solution
Introduction:
The charge on an ion is equal to the valency of an atom and positive charge represents the loss of electron by an atom while negative charge represents the gain of electron by an atom. Elements which have one, two, or three outer electrons tends to lose these electrons to form positive ions. Similarly, elements which have five to seven outer electronstends to gainelectrons to complete their outer orbitals.
Explanation:
Atomic number of aluminum is 13. Its electronic configuration is
Conclusion:
Hence, Aluminumhas a charge of
(b)
To identify: The charge on the ion of Chlorine.
(b)

Answer to Problem 16PEB
Solution:
The charge on the ion of Chlorine is
Explanation of Solution
Introduction:
The charge on an ion is equal to the valency of an atom and positive charge represents the loss of electron by an atom while negative charge represents the gain of electron by an atom. Elements which have one, two, or three outer electrons tends to lose these electrons to form positive ions. Similarly, elements which have five to seven outer electronstends to gain electrons to complete their outer orbitals.
Explanation:
Atomic number of chlorine is 17. Its electronic configuration is
Conclusion:
Conclusion:
Hence, Chlorine has a charge of
(c)
To identify: The charge on the ion of Magnesium.
(c)

Answer to Problem 16PEB
Solution:
The charge on the ion of Magnesiumis
Explanation of Solution
Introduction:
Introduction:
The charge on an ion is equal to the valency of an atom and positive charge represents the loss of electron by an atom while negative charge represents the gain of electron by an atom. Elements which have one, two, or three outer electrons tends to lose these electrons to form positive ions. Similarly, elements which have five to seven outer electrons, tends to gain electrons to complete their outer orbitals.
Explanation:
Atomic number of magnesium is 12. Its electronic configuration is
Conclusion:
Hence, Magnesium has a charge of 2+ charge on its ion.
(d)
To identify: The charge on the ion of Sodium.
(d)

Answer to Problem 16PEB
Solution:
The charge on the ion of Sodium is
Explanation of Solution
Introduction:
The charge on an ion is equal to the valency of an atom and positive charge represents the loss of electron by an atom while negative charge represents the gain of electron by an atom. Elements which have one, two, or three outer electrons tends to lose these electrons to form positive ions. Similarly, elements which have five to seven outer electrons, tends to gain electrons to complete their outer orbitals.
Explanation:
Atomic number of sodium is 11. Its electronic configuration is
Conclusion:
Hence, Sodium ion has a charge of
(e)
To identify: The charge on the ion of Sulfur.
(e)

Answer to Problem 16PEB
Solution:
The charge on the ion of Sulfur is
Explanation of Solution
Introduction:
The charge on an ion is equal to the valency of an atom and positive charge represents the loss of electron by an atom while negative charge represents the gain of electron by an atom. Elements which have one, two, or three outer electrons tends to lose these electrons to form positive ions. Similarly, elements which have five to seven outer electrons, tends to gain electrons to complete their outer orbitals.
Explanation:
Atomic number of sulfur is 16. Its electronic configuration is
Conclusion:
Hence, Sulfur has a charge of
(f)
To identify: The charge on the ion of Hydrogen.
(f)

Answer to Problem 16PEB
Solution:
The charge on the ion of Hydrogenis
Explanation of Solution
Introduction:
The charge on an ion is equal to the valency of an atom and positive charge represents the loss of electron by an atom while negative charge represents the gain of electron by an atom. Elements which have one, two, or three outer electrons tends to lose these electrons to form positive ions. Similarly, elements which have five to seven outer electrons, tends to gain electrons to complete their outer orbitals.
Explanation:
Atomic number of hydrogen is 1. Its electronic configuration is
Conclusion:
Hence, hydrogen have a charge of -1 and
Want to see more full solutions like this?
Chapter 8 Solutions
Physical Science
- A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forward
- Describe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward
- 3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forward
- When violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardCalculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





