a)
The final temperature of the helium
a)

Explanation of Solution
Given:
The volume of the nitrogen is 0.2 m3.
The mass of the helium
The initial temperature of the gases
The initial pressure of the gases
The final temperature of the nitrogen is 500°C.
The final pressure of the helium
Calculation:
Refer the Table A-2, “Ideal-gas specific heats of various common gases table”,
The specific heat ratio
Write the relation between the pressure and temperature in the isentropic process.
b)
The final volume of nitrogen
b)

Explanation of Solution
Refer the Table A-2, “Ideal-gas specific heats of various common gases table”,
The gas constant for the helium gas is
Calculate the initial volume of helium
Calculate the final volume of helium
Calculate the final volume of the nitrogen
Thus, the final volume of nitrogen is
c)
The heat transferred to the nitrogen.
c)

Explanation of Solution
Refer the Table A-2, “Ideal-gas specific heats of various common gases table”,
The gas constant for the helium gas
The specific heat constant the helium gas
The gas constant for the helium gas
The specific heat constant the helium gas
Calculate the mass of the nitrogen
Calculate the temperature of the nitrogen
Calculate the change in internal energy of the nitrogen.
Calculate the change in internal energy of the Helium.
Calculate the heat transferred to the nitrogen using the energy balance equation for the system.
Thus, the heat transferred to the nitrogen is
d)
The entropy generation during the process
d)

Explanation of Solution
Write the expression for the entropy generation
Thus, the entropy generation during the process is
Want to see more full solutions like this?
Chapter 8 Solutions
Fundamentals Of Thermal-fluid Sciences In Si Units
- practise questionarrow_forwardCan you provide steps and an explaination on how the height value to calculate the Pressure at point B is (-5-3.5) and the solution is 86.4kPa.arrow_forwardPROBLEM 3.46 The solid cylindrical rod BC of length L = 600 mm is attached to the rigid lever AB of length a = 380 mm and to the support at C. When a 500 N force P is applied at A, design specifications require that the displacement of A not exceed 25 mm when a 500 N force P is applied at A For the material indicated determine the required diameter of the rod. Aluminium: Tall = 65 MPa, G = 27 GPa. Aarrow_forward
- Find the equivalent mass of the rocker arm assembly with respect to the x coordinate. k₁ mi m2 k₁arrow_forward2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward
- 3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





