Physics: Principles with Applications
7th Edition
ISBN: 9780321625922
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 13P
How fast (in rpm) must a centrifuge rotate ifa particle 8.0 cm from the axis of rotation is to experience an acceleration of 100,000 g's?
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule04:38
Students have asked these similar questions
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm.
Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from
the center of the sphere.
(a) =
=
(b) E =
(c)Ẻ =
=
NC NC NC
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
Chapter 8 Solutions
Physics: Principles with Applications
Ch. 8 - A solid ball and a solid cylinder roll down a...Ch. 8 - A bicycle odometer (which counts revolutions and...Ch. 8 - Prob. 2QCh. 8 - Prob. 3QCh. 8 - Why is it more difficult to do a sit-up with your...Ch. 8 - If the net force on a system is zero, is the net...Ch. 8 - Mammals that depend on being able to run fast have...Ch. 8 - This book has three symmetry axes through its...Ch. 8 - Can the mass of a rigid object be considered...Ch. 8 - The moment of inertia of a rotating solid disk...
Ch. 8 - Two inclines have the same height but make...Ch. 8 - Two spheres look identical and have the same mass....Ch. 8 - A sphere and a cylinder have the same radius and...Ch. 8 - Prob. 13QCh. 8 - Prob. 14QCh. 8 - 15. Can the diver of Fig. 8-28 do a somersault...Ch. 8 - When a motorcyclist leaves the ground on a jump...Ch. 8 - Prob. 17QCh. 8 - 18. The angular velocity of a wheel rotating on a...Ch. 8 - 19. In what direction is the Earth's angular...Ch. 8 - 20. ‘On the basis of the law of conservation of...Ch. 8 - Bonnie sits on the outer rim of a merry-go-round,...Ch. 8 - Prob. 2MCQCh. 8 - Prob. 3MCQCh. 8 - Prob. 4MCQCh. 8 - Prob. 5MCQCh. 8 - Prob. 6MCQCh. 8 - Prob. 7MCQCh. 8 - Prob. 8MCQCh. 8 - Prob. 9MCQCh. 8 - Prob. 10MCQCh. 8 - Prob. 11MCQCh. 8 - Prob. 12MCQCh. 8 - Suppose you are sitting on a rotating stool...Ch. 8 - Express the following angles in radians: (a)...Ch. 8 - The Sun subtends an angle of about 0.5° to us on...Ch. 8 - A laser beam is directed at the Moon, 380,000 km...Ch. 8 - The blades in a blender rotate at a rate of 6500...Ch. 8 - 5. (II) The platter of the hard drive of a...Ch. 8 - Prob. 6PCh. 8 - (a) A grinding wheel 0.35 m in diameter rotates at...Ch. 8 - Prob. 8PCh. 8 - Calculate the angular velocity (a) of a clock's...Ch. 8 - Prob. 10PCh. 8 - What is the linear speed, due to the Earth's...Ch. 8 - Prob. 12PCh. 8 - How fast (in rpm) must a centrifuge rotate ifa...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - An automobile engine slows down from 3500 rpm to...Ch. 8 - 18. (I) A centrifuge accelerates uniformly from...Ch. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - A wheel 31 cm in diameter accelerates uniformly...Ch. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - A 52-kg person riding a bike puts all her weight...Ch. 8 - Calculate the net torque about the axle of the...Ch. 8 - A person exerts a horizontal force of 42 N on the...Ch. 8 - Prob. 27PCh. 8 - The bolts on the cylinder head of an engine...Ch. 8 - Determine the net torque on the 2.0-m-long uniform...Ch. 8 - Determine the moment of inertia of a 10.8-kg...Ch. 8 - 31. (I) Estimate the moment of inertia of a...Ch. 8 - A merry-go-round accelerates from rest to 0.68...Ch. 8 - Prob. 33PCh. 8 - (II) A grinding wheel is a uniform cylinder with a...Ch. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - A centrifuge rotor rotating at 9200 rpm is shut...Ch. 8 - 45. (II) To get a flat, uniform cylindrical...Ch. 8 - 46. (Ill) Two blocks are connected by a light...Ch. 8 - 47 (III) An Atwood machine consists of two masses,...Ch. 8 - A hammer thrower accelerates the hammer (mass...Ch. 8 - 49. (I) An automobile engine develops a torque of...Ch. 8 - A centrifuge rotor has a moment of inertia of 325...Ch. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - What is the angular momentum of a 0.270-kg ball...Ch. 8 - (a) What is the angular momentum of a 2.8-kg...Ch. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - A person of mass 75 kg stands at the center of a...Ch. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75GPCh. 8 - Prob. 76GPCh. 8 - Prob. 77GPCh. 8 - Prob. 78GPCh. 8 - Prob. 79GPCh. 8 - Prob. 80GPCh. 8 - Prob. 81GPCh. 8 - Figure 8-59 illustrates an H20 molecule The O — H...Ch. 8 - A hollow cylinder (hoop) is rolling on a...Ch. 8 - Prob. 84GPCh. 8 - Prob. 85GPCh. 8 - Prob. 86GPCh. 8 - Prob. 87GPCh. 8 - Prob. 88GPCh. 8 - Prob. 89GPCh. 8 - Prob. 90GPCh. 8 - A large spool of rope rolls on the ground with the...Ch. 8 - The Moon orbits the Earth such that the same side...Ch. 8 - Prob. 93GPCh. 8 - Most of our Solar System's mass is contained in...Ch. 8 - Prob. 95GPCh. 8 - Prob. 96GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Low-pressure centers are also referred to as ______, while high-pressure centers are called ______.
Applications and Investigations in Earth Science (9th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
What two components contribute to species diversity? Explain how two communities with the same number of specie...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY