Concept explainers
(a)
Whether the child-earth system is isolated or not.
(a)
Answer to Problem 13P
Therefore, the child-earth system is isolated as the only force that can do work on the child is her weight.
Explanation of Solution
The mass of the child is
In the child-earth system, the total work on the child is done by the gravitation force (her weight) only as there is no friction and the air resistance is ignored. The work done by the normal force of the slide is zero because her displacement is perpendicular to the normal force.
Hence, the child-earth system is an isolated system.
Conclusion:
Therefore, the child-earth system is isolated as the only force that can do work on the child is her weight.
(b)
Whether there is a non-conservative force acting within the system or not.
(b)
Answer to Problem 13P
Therefore, there is no non conservative force acting within the system because there is no frictional force.
Explanation of Solution
Only the weight of the child does work whereas the normal force does no work since the displacement is always perpendicular to the normal force.
The child-earth system is isolated so, there is no loss of energy. There is no non- conservative force acting within the system because frictional force is absent here.
Conclusion:
Therefore, there is no non conservative force acting within the system because there is no frictional force.
(c)
The total energy of the earth-child system when the child is at the top of the water slide.
(c)
Answer to Problem 13P
The total energy of the earth-child system when the child is at the top of the water slide is
Explanation of Solution
Write the formula to calculate the total energy at the top of the water slide
Here,
Write the formula to calculate the potential energy of the system at the top of the water slide
Here,
As the child starts from rest therefore, the kinetic energy at the top is zero.
Substitute
Conclusion:
Therefore, the total energy of the earth child system when the child is at the top of the water slide is
(d)
The expression for the total energy of the system at the launching point.
(d)
Answer to Problem 13P
The total energy of the system at the launching point is
Explanation of Solution
The mass of the child is
Write the formula to calculate the total energy at the launching point of earth child system
Here,
Write the formula to calculate the potential energy of the system at the launching point of the water slide
Write the formula to calculate the kinetic energy of the system at the launching point of the water slide
Here,
Substitute
Conclusion:
Therefore, the total energy of the earth child system at the launching point is
(e)
The expression for the total energy of the system at the highest point in her projectile motion.
(e)
Answer to Problem 13P
The total energy of the system at the highest point of the projectile motion is
Explanation of Solution
Write the formula to calculate the total energy at the highest point in the projectile motion of earth child system
Here,
Write the formula to calculate the potential energy of the system at the highest point of her projectile motion
Here,
Write the formula to calculate the kinetic energy of the system at the highest point of her projectile motion
Here,
Substitute
Conclusion:
Therefore, the total energy of the system at the highest point of the projectile motion is
(f)
The speed of child at launching point.
(f)
Answer to Problem 13P
The speed of child at launching point is
Explanation of Solution
As the total energy of the system remains conserved at every point therefore,
Substitute
Conclusion:
Therefore, the speed of child at launching point is
(g)
The maximum airborne height
(g)
Answer to Problem 13P
The maximum airborne height
Explanation of Solution
Write the formula to calculate the maximum height
Substitute
The horizontal component of velocity
Substitute
Substitute
Conclusion:
Therefore, the speed of child at launching point is
(h)
Whether the answers would be same if the waterslide were not frictionless.
(h)
Answer to Problem 13P
Therefore, the answers would not be same if the waterslide were not frictionless.
Explanation of Solution
Due to the presence of frictional force, the total mechanical energy of the system would not conserve. There would be some frictional losses. So, the kinetic energy of the child at every point after the top of the slide would be less than the kinetic energy when there is no friction.
Thus, less kinetic energy means, her launch speed, maximum height and final speed would also be less.
Conclusion:
Therefore, the answers would not be same if the waterslide were not frictionless.
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers
- A child of mass m starts from rest and slides without friction from a height h along a slide next to a pool (Fig. P7.27). She is launched from a height h/5 into the air over the pool. We wish to find the maximum height she reaches above the water in her projectile motion. (a) Is the childEarth system isolated or nonisolated? Why? (b) Is there a nonconservative force acting within the system? (c) Define the configuration of the system when the child is at the water level as having zero gravitational potential energy. Express the total energy of the system when the child is at the top of the waterslide. (d) Express the total energy of the system when the child is at the launching point. (e) Express the total energy of the system when the child is at the highest point in her projectile motion. (f) From parts (c) and (d), determine her initial speed vi at the launch point in terms of g and h. (g) From parts (d), (e), and (f), determine her maximum airborne height ymax in terms of h and the launch angle . (h) Would your answers be the same if the waterslide were not frictionless? Explain. Figure P7.27arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forwardTwo blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together with the spring between them (Fig. P8.7). A cord initially holding the blocks together is burned; after that happens, the block of mass 3m moves to the right with a speed of 2.00 m/s. (a) What is the velocity of the block of mass m? (b) Find the systems original elastic potential energy, taking m = 0.350 kg. (c) Is the original energy in the spring or in the cord? (d) Explain your answer to part (c). (e) Is the momentum of the system conserved in the bursting-apart process? Explain how that is possible considering (f) there are large forces acting and (g) there is no motion beforehand and plenty of motion afterward? Figure P8.7arrow_forward
- Check Your Understanding There is a second solution to the system of equations solved in this example (because the energy equation is quadratic): v1.f=-2.5m/s , v2.f=0 . This solution is unacceptable on physical grounds; what’s with it?arrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3 (e) 9arrow_forwardWhy is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The ball launcher in the machine sends metal balls up one side of the machine and then into play. The spring in the launcher (Fig. P6.60) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting.arrow_forward
- A space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardEstimate the kinetic energy of the following: a. An ant walking across the kitchen floor b. A baseball thrown by a professional pitcher c. A car on the highway d. A large truck on the highwayarrow_forwardA small 0.65-kg box is launched from rest by a horizontal spring as shown in Figure P9.50. The block slides on a track down a hill and comes to rest at a distance d from the base of the hill. The coefficient of kinetic friction between the box and the track is 0.35 along the entire track. The spring has a spring constant of 34.5 N/m, and is compressed 30.0 cm with the box attached. The block remains on the track at all times. a. What would you include in the system? Explain your choice. b. Calculate d. c. Compare your answer with your answer to Problem 50 if you did that problem.arrow_forward
- Ezra (m = 25.0 kg) has a tire swing and wants to swing as high as possible. He thinks that his best option is to run as fast as he can and jump onto the tire at full speed. The tire has a mass of 10.0 kg and hangs 3.75 m straight down from a tree branch. Ezra stands back 10.0 m and accelerates to a speed of 3.50 m /s before jumping onto the tire swing. a. How fast are Ezra and the tire moving immediately after he jumps onto the swing? b. How high does the tire travel above its initial height?arrow_forwardTo give a pet hamster exercise, some people put the hamster in a ventilated ball andallow it roam around the house(Fig. P13.66). When a hamsteris in such a ball, it can cross atypical room in a few minutes.Estimate the total kinetic energyin the ball-hamster system. FIGURE P13.66 Problems 66 and 67arrow_forwardGwen is baby-sitting for the Parker family. She takes 3-year old Allison to the neighborhood park and places her in the seat of the children's swing. Gwen pulls the 1.8-m long chain back to make a 26° angle with the vertical and lets 14-kg Allison (swing mass included) go. Assuming negligible friction and air resistance, determine Allison's speed at the lowest point in the trajectory.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University