Student Solutions Manual With Study Guide, Volume 2 For Serway/vuilles College Physics, 10th
10th Edition
ISBN: 9781285866260
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 13P
To determine
The place of the fourth object when the center of mass is at
( 0.0 , 0.0 ) m
.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Students are asked to use circular motion to measure the
coefficient of static friction between two materials. They
have a round turntable with a surface made from one of
the materials, for which they can vary the speed of rotation.
They also have a small block of mass m made from the sec-
ond material. A rough sketch of the apparatus is shown in
the figure below. Additionally they have equipment normally
found in a physics classroom.
Axis
m
(a) Briefly describe a procedure that would allow you
to use this apparatus to calculate the coefficient of
static friction, u.
(b) Based on your procedure, determine how to
analyze the data collected to calculate the
coefficient of friction.
(c) One group of students collects the following
data.
r (m)
fm (rev/s)
0.050
1.30
0.10
0.88
0.15
0.74
0.20
0.61
0.25
0.58
i. Use the empty spaces in the table as needed to
calculate quantities that would allow you to
use the slope of a line graph to calculate the
coefficient of friction, providing labels with…
Chapter 8 Solutions
Student Solutions Manual With Study Guide, Volume 2 For Serway/vuilles College Physics, 10th
Ch. 8.5 - Using a screwdriver, you try to remove a screw...Ch. 8.5 - A constant net torque is applied to an object....Ch. 8.5 - The two rigid objects shown in Figure 8.21 have...Ch. 8.6 - Two spheres, one hollow and one solid, are...Ch. 8.7 - A horizontal disk with moment of inertia I1...Ch. 8.7 - If global warming continues, its likely that some...Ch. 8 - Math Review The two conditions for equilibrium...Ch. 8 - Math Review Solve the equations 12mv2+12I2=mgh and...Ch. 8 - Prob. 3WUECh. 8 - Physics Review A construction cranes cable lifts a...
Ch. 8 - A man opens a 1.00-m wide door by pushing on it...Ch. 8 - A worker applies a torque to a nut with a wrench...Ch. 8 - Prob. 7WUECh. 8 - A horizontal plank 4.00 m long and having mass...Ch. 8 - A student rides his bicycle at a constant speed of...Ch. 8 - What is- the magnitude of the angular acceleration...Ch. 8 - Prob. 11WUECh. 8 - A bowling ball of mass 7.00 kg is rolling at 3.00...Ch. 8 - A basketball player entertains the crowd by...Ch. 8 - A disk of mass m is spinning freely at 6.00 rad/s...Ch. 8 - Why cant you put your heels firmly against a wall...Ch. 8 - If you see an object rotating, is there...Ch. 8 - (a) Is it possible to calculate the torque acting...Ch. 8 - Why does a long pole help a tightrope walker stay...Ch. 8 - If you toss a textbook into the air, rotating it...Ch. 8 - Stars originate as large bodies of slowly rotating...Ch. 8 - In a tape recorder, the tape is pulled past the...Ch. 8 - (a) Give an example in which the net force acting...Ch. 8 - A cat usually lands on its feet regardless of the...Ch. 8 - A solid disk and a hoop are simultaneously...Ch. 8 - A mouse is initially at rest on a horizontal...Ch. 8 - The cars in a soapbox derby have no engines; they...Ch. 8 - The fishing pole in Figure P8.3 makes an angle of...Ch. 8 - Find the net torque on the wheel in Figure P8.4...Ch. 8 - Figure P8.4 Calculate the net torque (magnitude...Ch. 8 - A dental bracket exerts a horizontal force of 80.0...Ch. 8 - A simple pendulum consists of a small object of...Ch. 8 - Write the necessary equations of equilibrium of...Ch. 8 - Torque and the Two Conditions for Equilibrium 17....Ch. 8 - Prob. 8PCh. 8 - A cook holds a 2.00-kg carton of milk at arm's...Ch. 8 - A meter stick is found to balance at the 49.7-cm...Ch. 8 - Prob. 11PCh. 8 - A beam resting on two pivots has a length of L =...Ch. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Many of the elements in horizontal-bar exercises...Ch. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - When a person stands on tiptoe (a strenuous...Ch. 8 - A 500.-N uniform rectangular sign 4.00 m wide and...Ch. 8 - A window washer is standing on a scaffold...Ch. 8 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 8 - A hungry bear weighing 700. N walks out on a beam...Ch. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Four objects are held in position at the corners...Ch. 8 - If the system shown in Figure P8.37 is set in...Ch. 8 - A large grinding wheel in the shape of a solid...Ch. 8 - An oversized yo-yo is made from two identical...Ch. 8 - A rope of negligible mass is wrapped around a 225...Ch. 8 - A potters wheel having a radius of 0.50 m and a...Ch. 8 - A model airplane with mass 0.750 kg is tethered by...Ch. 8 - A bicycle wheel has a diameter of 64.0 cm and a...Ch. 8 - A 150.-kg merry-go-round in the shape of a...Ch. 8 - An Atwoods machine consists of blocks of masses m1...Ch. 8 - An airliner lands with a speed of 50.0 m/s. Each...Ch. 8 - A car is designed to get its energy from a...Ch. 8 - A horizontal 800.-N merry-go-round of radius 1.50...Ch. 8 - Four objectsa hoop, a solid cylinder, a solid...Ch. 8 - A light rod of length = 1.00 m rotates about an...Ch. 8 - A 240-N sphere 0.20 m in radius rolls without...Ch. 8 - A solid, uniform disk of radius 0.250 m and mass...Ch. 8 - A solid uniform sphere of mass m and radius R...Ch. 8 - The top in Figure P8.55 has a moment of inertia of...Ch. 8 - A constant torque of 25.0 N m is applied to a...Ch. 8 - A 10.0-kg cylinder rolls without slipping on a...Ch. 8 - Use conservation of energy to determine the...Ch. 8 - A giant swing at an amusement park consists of a...Ch. 8 - Each of the following objects has a radius of...Ch. 8 - (a) Calculate the angular momentum of Earth that...Ch. 8 - A 0.005 00-kg bullet traveling horizontally with a...Ch. 8 - A light, rigid rod of length = 1.00 m rotates...Ch. 8 - Haileys comet moves about the Sun in an elliptical...Ch. 8 - A rigid, massless rod has three particles with...Ch. 8 - A 60.0-kg woman stands at the rim of a horizontal...Ch. 8 - A solid, horizontal cylinder of mass 10.0 kg and...Ch. 8 - A student sits on a rotating stool holding two...Ch. 8 - The puck in Figure P8.71 has a mass of 0.120 kg....Ch. 8 - A space station shaped like a giant wheel has a...Ch. 8 - A cylinder with moment of inertia I1 rotates with...Ch. 8 - A particle of mass 0.400 kg is attached to the...Ch. 8 - Additional Problems A typical propeller of a...Ch. 8 - Prob. 68APCh. 8 - Prob. 69APCh. 8 - Prob. 70APCh. 8 - A uniform ladder of length L and weight w is...Ch. 8 - Two astronauts (Fig. P8.80), each haring a mass of...Ch. 8 - S This is a symbolic version of problem 80. Two...Ch. 8 - Two window washers. Bob and Joe, are on a...Ch. 8 - A 2.35-kg uniform bar of length = 1.30 m is held...Ch. 8 - A light rod of length 2L is free to rotate in a...Ch. 8 - A light rope passes over a light, frictionless...Ch. 8 - An electric motor turns a flywheel through a drive...Ch. 8 - Prob. 79APCh. 8 - A uniform thin rod of length L and mass M is free...Ch. 8 - Prob. 81APCh. 8 - Prob. 82APCh. 8 - A war-wolf, or trebuchet, is a device used during...Ch. 8 - A string is wrapped around a uniform cylinder of...Ch. 8 - The Iron Cross When a gymnast weighing 750 N...Ch. 8 - In an emergency situation, a person with a broken...Ch. 8 - An object of mass m1 = 4.00 kg is connected by a...Ch. 8 - Prob. 88APCh. 8 - A 3.2-kg sphere is suspended by a cord that passes...
Knowledge Booster
Similar questions
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forward
- Only Part B.) is necessaryarrow_forwardA (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- fine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forwardThree point charges of magnitudes Q₁ = +6.0 μС, Q₂ = −7.0 μС, Qз = −13.0 μC are placed on the x-axis at x = 0 cm, x = 40 cm, and x = 120 cm, respectively. What is the force on the Q3 due to the other two charges?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning