Physics
Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8, Problem 115P

(a)

To determine

The angular velocity when the hoop arrives at the bottom.

(a)

Expert Solution
Check Mark

Answer to Problem 115P

The angular velocity when the hoop arrives at the bottom is 6.28rad/s.

Explanation of Solution

Write an expression to calculate the angular velocity when the hoop arrives at the bottom.

ωf=2ωav=2(vavr)=2((Δx/Δt)(C/2π))=4πΔxCΔt (I)

Here, ωf is the angular velocity when the hoop arrives at the bottom, ωav is the average velocity, vav is the average velocity, r is the radius, Δx is the displacement, Δt is the time and C is the circumference.

Conclusion:

Substitute 10.0m for Δx, 2.00m for C and 10.0s for Δt in equation (I) to find ωf.

ωf=4π(10.0m)(2.00m)(10.0s)=4π(10.0m)(20.0ms)=6.28rad/s

Thus, the angular velocity when the hoop arrives at the bottom is 6.28rad/s.

(b)

To determine

The angular momentum of the hoop at the bottom.

(b)

Expert Solution
Check Mark

Answer to Problem 115P

The angular momentum of the hoop at the bottom is 0.955kgm2/s.

Explanation of Solution

Refer figure 1.

Write an expression for the angular momentum of the hoop at the bottom.

L=Iω=(mr2)ω=m(C2π)2ω (II)

Here, L is the angular momentum of the hoop at the bottom, I is the moment of inertia, m is the mass and ω is the angular velocity.

Conclusion:

Substitute 1.50kg for m, 2.00m for r and 2πrad/s for ω in equation (II) to find τmotor.

L=(1.50kg)(2.00m2π)2(2πrad/s)=(1.50kg)(4.00m24π2)(2πrad/s)=0.955kgm2/s

Thus, the angular momentum of the hoop at the bottom is 0.955kgm2/s.

(c)

To determine

The forces applied the net torque to change the hoop’s angular momentum.

(c)

Expert Solution
Check Mark

Answer to Problem 115P

The forces applied the net torque to change the hoop’s angular momentum is the friction.

Explanation of Solution

The gravitational force is acting at the geometric centre of the hoop. To have a torque to create a change in momentum, the force should act at a distance from the axis of rotation through the geometric centre. Thus, the gravitational force cannot produce a change in momentum.

The force of static friction acts at the rim of the hoop. The force of friction acts perpendicularly to the line between the axis of the hoop and the point of contact between the rim of the hoop and the inclined plane. This can produce torque and hence change in angular momentum. Thus, force of friction causes the net torque about the hoop’s axis.

(d)

To determine

Magnitude of the force that creates the torque.

(d)

Expert Solution
Check Mark

Answer to Problem 115P

Magnitude of the force that creates the torque is 0.300N.

Explanation of Solution

Write an expression for the magnitude of the force that creates the torque.

f=τr=(ΔL/Δt)(C/2π)=2πΔLCΔt (III)

Here, f is the force, τ is the torque and ΔL is the change in angular momentum.

Conclusion:

Substitute 0.955kgm2/s for ΔL, 2.00m for C and 10.0s for Δt in equation (III) to find f.

f=2π(0.955kgm2/s)(2.00m)(10.0s)=2π(0.955kgm2/s)20.0ms=0.300N

Thus, the magnitude of the force that creates the torque is 0.300N.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
suggest a reason ultrasound cleaning is better than cleaning by hand?
Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)
What is integrated science. What is fractional distillation What is simple distillation

Chapter 8 Solutions

Physics

Ch. 8.4 - Prob. 8.8PPCh. 8.4 - Prob. 8.9PPCh. 8.5 - Prob. 8.10PPCh. 8.6 - Prob. 8.11PPCh. 8.7 - Prob. 8.12PPCh. 8.7 - Prob. 8.7CPCh. 8.7 - Prob. 8.13PPCh. 8.8 - Prob. 8.8CPCh. 8.8 - Prob. 8.14PPCh. 8.8 - Prob. 8.15PPCh. 8 - Prob. 1CQCh. 8 - Prob. 2CQCh. 8 - Prob. 3CQCh. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - Prob. 7CQCh. 8 - Prob. 8CQCh. 8 - Prob. 9CQCh. 8 - Prob. 10CQCh. 8 - Prob. 11CQCh. 8 - Prob. 12CQCh. 8 - Prob. 13CQCh. 8 - Prob. 14CQCh. 8 - Prob. 15CQCh. 8 - Prob. 16CQCh. 8 - Prob. 17CQCh. 8 - Prob. 18CQCh. 8 - Prob. 19CQCh. 8 - Prob. 20CQCh. 8 - Prob. 21CQCh. 8 - Prob. 1MCQCh. 8 - Prob. 2MCQCh. 8 - Prob. 3MCQCh. 8 - Prob. 4MCQCh. 8 - Prob. 5MCQCh. 8 - Prob. 6MCQCh. 8 - Prob. 7MCQCh. 8 - Prob. 9MCQCh. 8 - Prob. 10MCQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - 13. The pull cord of a lawnmower engine is wound...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - 32. A sculpture is 4.00 m tall and has its center...Ch. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - 42. A man is doing push-ups. He has a mass of 68...Ch. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Prob. 48PCh. 8 - Prob. 49PCh. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Prob. 64PCh. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 65PCh. 8 - Prob. 67PCh. 8 - Prob. 66PCh. 8 - Prob. 69PCh. 8 - Prob. 68PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75PCh. 8 - Prob. 76PCh. 8 - Prob. 77PCh. 8 - Prob. 78PCh. 8 - Prob. 79PCh. 8 - Prob. 80PCh. 8 - Prob. 81PCh. 8 - Prob. 82PCh. 8 - Prob. 83PCh. 8 - Prob. 84PCh. 8 - Problems 85 and 86. A solid cylindrical disk is to...Ch. 8 - Prob. 86PCh. 8 - Prob. 87PCh. 8 - Prob. 88PCh. 8 - Prob. 89PCh. 8 - Prob. 90PCh. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - Prob. 93PCh. 8 - Prob. 94PCh. 8 - Prob. 95PCh. 8 - Prob. 96PCh. 8 - Prob. 97PCh. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - Prob. 100PCh. 8 - Prob. 101PCh. 8 - Prob. 102PCh. 8 - Prob. 103PCh. 8 - Prob. 104PCh. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - Prob. 107PCh. 8 - Prob. 108PCh. 8 - Prob. 109PCh. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - 116. A large clock has a second hand with a mass...Ch. 8 - 117. A planet moves around the Sun in an...Ch. 8 - 118. A 68 kg woman stands straight with both feet...Ch. 8 - Prob. 118PCh. 8 - Prob. 120PCh. 8 - Prob. 121PCh. 8 - Prob. 122PCh. 8 - Prob. 123PCh. 8 - Prob. 125PCh. 8 - Prob. 124PCh. 8 - Prob. 126PCh. 8 - Prob. 127PCh. 8 - Prob. 128PCh. 8 - Prob. 129PCh. 8 - Prob. 130PCh. 8 - Prob. 131PCh. 8 - Prob. 132PCh. 8 - Prob. 133P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License