COLLEGE PHYSICS,VOLUME 1
COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8, Problem 111QAP
To determine

The angular velocity of the skater when he pulls his parallel to his trunk.

Expert Solution & Answer
Check Mark

Answer to Problem 111QAP

The angular velocity of the skater is, 642.786rpm.

Explanation of Solution

Given information:

The mass distribution of a human body can be considered as, 80% for the trunk and legs 13%, for the arms and hands, and 7% for the head.

The spinning skater with hands outstretched can be modeled as a vertical cylinder with two uniform rods attached to it.

The mass of the skater is, 62kg and he is, 1.8m tall.

His trunk can be modeled as a cylinder with 35cm diameter.

The length of both arm and a hand is, 65cm.

The spinning speed of the skater with his arms outstretched is, 70rpm.

Formula used:

  I=m.r2

  I1ω1=I2ω2

Calculation:

Let us first consider the hand outstretched position.

  COLLEGE PHYSICS,VOLUME 1, Chapter 8, Problem 111QAP , additional homework tip  1

The moment of inertia of the arms can be calculated as follows.

The mass of an arm and a hand is,

  62kg×13100×12

  4.03kg

Since the arms are modeled as uniform rods, let us assume that they have a uniform linear density λ.

  λ=4.030.65

  λ=6.2

Let us consider the moment of inertia of small particle of the rod, which is x length away from its center of rotation.

Using the given formula, its moment of inertia can be written as,

  I=x2dm

  I=x2d(λx)

  I=λx2dx

Applying the limits,

  I=λ0.351x2dx

  I=6.23(130.353)

  I=1.978

The moment of inertia for the both arms is, 3.956kg.m2.

Let us now consider the head and the trunk.

The mass of the trunk and head is,

  62kg×87100

  53.94kg

Assuming the cylinder to be uniform, let us denote its density by ρ.

  ρ=53.94π×0.352×1.8

  ρ=77.8668

It can be modeled as a solid cylinder.

  COLLEGE PHYSICS,VOLUME 1, Chapter 8, Problem 111QAP , additional homework tip  2

Using the given formula, its moment of inertia can be written as,

  I=r2dm

  I=r2d(ρV)

  I=ρr2dV

But, dV=2πrLdr.

  I=2πρLr3dr

Applying the limits;

  I=2πρL00.175r3dr

  I=(2π×77.8668×1.8)00.175r3dr

  I=0.2065kg.m2

Considering the whole system, the moment of inertia when the hands are outstretched is,

  I1=3.956kg.m2+0.2065kg.m2

  I1=4.1625kg.m2

Let us now consider the case when skater is pulling his arms towards him.

The moment of inertia of the head and the trunk remains the same.

But moment of inertia of the hands and arms change.

Since there is no mass distribution perpendicular to the axis of rotation, the moment of inertia can be directly calculated.

  I=mr2+mr2I=2mr2I=2×4.03×0.1752I=0.2468kg.m2

Therefore, the moment of inertia for the whole system will be,

  I2=0.2468kg.m2+0.2065kg.m2

  I2=0.4533kg.m2

Now let us consider the conservation of angular momentum;

  I1ω1=I2ω2

  4.1625×70=0.4533×ω2ω2=642.786rpm

Conclusion:

The angular speed of the skater when he pulls his arms towards him is, 642.786rpm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. vector projection. Assume, ER1001 and you know the following: ||||=4, 7=-0.5.7. For each of the following, explicitly compute the value. འབ (a) (b) (c) (d) answer. Explicitly compute ||y7||. Explain your answer. Explicitly compute the cosine similarity of and y. Explain your Explicitly compute (x, y). Explain your answer. Find the projection of onto y and the projection of onto .
2. Answer the following questions using vectors u and v. --0-0-0 = find the the cosine similarity and the angle between u and v. འརྒྱ (a) (b) find the scalar projection of u onto v. (c) find the projection of u onto v. (d) (e) (f) find the scalar projection of onto u. find the projection of u onto u. find the projection of u onto and the projection of onto . (Hint: find the inner product and verify the orthogonality)
Please type out answer

Chapter 8 Solutions

COLLEGE PHYSICS,VOLUME 1

Ch. 8 - Prob. 11QAPCh. 8 - Prob. 12QAPCh. 8 - Prob. 13QAPCh. 8 - Prob. 14QAPCh. 8 - Prob. 15QAPCh. 8 - Prob. 16QAPCh. 8 - Prob. 17QAPCh. 8 - Prob. 18QAPCh. 8 - Prob. 19QAPCh. 8 - Prob. 20QAPCh. 8 - Prob. 21QAPCh. 8 - Prob. 22QAPCh. 8 - Prob. 23QAPCh. 8 - Prob. 24QAPCh. 8 - Prob. 25QAPCh. 8 - Prob. 26QAPCh. 8 - Prob. 27QAPCh. 8 - Prob. 28QAPCh. 8 - Prob. 29QAPCh. 8 - Prob. 30QAPCh. 8 - Prob. 31QAPCh. 8 - Prob. 32QAPCh. 8 - Prob. 33QAPCh. 8 - Prob. 34QAPCh. 8 - Prob. 35QAPCh. 8 - Prob. 36QAPCh. 8 - Prob. 37QAPCh. 8 - Prob. 38QAPCh. 8 - Prob. 39QAPCh. 8 - Prob. 40QAPCh. 8 - Prob. 41QAPCh. 8 - Prob. 42QAPCh. 8 - Prob. 43QAPCh. 8 - Prob. 44QAPCh. 8 - Prob. 45QAPCh. 8 - Prob. 46QAPCh. 8 - Prob. 47QAPCh. 8 - Prob. 48QAPCh. 8 - Prob. 49QAPCh. 8 - Prob. 50QAPCh. 8 - Prob. 51QAPCh. 8 - Prob. 52QAPCh. 8 - Prob. 53QAPCh. 8 - Prob. 54QAPCh. 8 - Prob. 55QAPCh. 8 - Prob. 56QAPCh. 8 - Prob. 57QAPCh. 8 - Prob. 58QAPCh. 8 - Prob. 59QAPCh. 8 - Prob. 60QAPCh. 8 - Prob. 61QAPCh. 8 - Prob. 62QAPCh. 8 - Prob. 63QAPCh. 8 - Prob. 64QAPCh. 8 - Prob. 65QAPCh. 8 - Prob. 66QAPCh. 8 - Prob. 67QAPCh. 8 - Prob. 68QAPCh. 8 - Prob. 69QAPCh. 8 - Prob. 70QAPCh. 8 - Prob. 71QAPCh. 8 - Prob. 72QAPCh. 8 - Prob. 73QAPCh. 8 - Prob. 74QAPCh. 8 - Prob. 75QAPCh. 8 - Prob. 76QAPCh. 8 - Prob. 77QAPCh. 8 - Prob. 78QAPCh. 8 - Prob. 79QAPCh. 8 - Prob. 80QAPCh. 8 - Prob. 81QAPCh. 8 - Prob. 82QAPCh. 8 - Prob. 83QAPCh. 8 - Prob. 84QAPCh. 8 - Prob. 85QAPCh. 8 - Prob. 86QAPCh. 8 - Prob. 87QAPCh. 8 - Prob. 88QAPCh. 8 - Prob. 89QAPCh. 8 - Prob. 90QAPCh. 8 - Prob. 91QAPCh. 8 - Prob. 92QAPCh. 8 - Prob. 93QAPCh. 8 - Prob. 94QAPCh. 8 - Prob. 95QAPCh. 8 - Prob. 96QAPCh. 8 - Prob. 97QAPCh. 8 - Prob. 98QAPCh. 8 - Prob. 99QAPCh. 8 - Prob. 100QAPCh. 8 - Prob. 101QAPCh. 8 - Prob. 102QAPCh. 8 - Prob. 103QAPCh. 8 - Prob. 104QAPCh. 8 - Prob. 105QAPCh. 8 - Prob. 106QAPCh. 8 - Prob. 107QAPCh. 8 - Prob. 108QAPCh. 8 - Prob. 109QAPCh. 8 - Prob. 110QAPCh. 8 - Prob. 111QAPCh. 8 - Prob. 112QAPCh. 8 - Prob. 113QAPCh. 8 - Prob. 114QAPCh. 8 - Prob. 115QAPCh. 8 - Prob. 116QAPCh. 8 - Prob. 117QAPCh. 8 - Prob. 118QAPCh. 8 - Prob. 119QAPCh. 8 - Prob. 120QAPCh. 8 - Prob. 121QAPCh. 8 - Prob. 122QAPCh. 8 - Prob. 123QAPCh. 8 - Prob. 124QAPCh. 8 - Prob. 125QAPCh. 8 - Prob. 126QAPCh. 8 - Prob. 127QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Intermediate Algebra
Algebra
ISBN:9780998625720
Author:Lynn Marecek
Publisher:OpenStax College
Text book image
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License