EBK DIFFERENTIAL EQUATIONS
5th Edition
ISBN: 9780321974235
Author: Calvis
Publisher: PEARSON CUSTOM PUB.(CONSIGNMENT)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7.6, Problem 21P
(a)
Program Plan Intro
Program Description: Purpose of the problem is to show that current in the
(b)
Program Plan Intro
Program Description: Purpose of the problem is to solve the differential equation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. calculates the trajectory r(t) and stores the coordinates for time steps At as a nested list trajectory that contains [[xe, ye,
ze], [x1, y1, z1], [x2, y2, z2], ...]. Start from time t = 0 and use a time step At = 0.01; the last data point in the
trajectory should be the time when the oscillator "hits the ground", i.e., when z(t) ≤ 0;
3. stores the time for hitting the ground (i.e., the first time t when z(t) ≤ 0) in the variable t_contact and the corresponding positions
in the variables x_contact, y_contact, and z_contact. Print
t_contact = 1.430
X_contact = 0.755
y contact = -0.380
z_contact =
(Output floating point numbers with 3 decimals using format (), e.g., "t_contact = {:.3f}" .format(t_contact).) The partial
example output above is for ze = 10.
4. calculates the average x- and y-coordinates
1
y =
Yi
N
where the x, y, are the x(t), y(t) in the trajectory and N is the number of data points that you calculated.
Store the result as a list in the variable center = [x_avg, y_avg]…
Electromagnetic Pulse propagating at oblique angle to a dielectric interface
Consider a gaussian wave pulse propagating along the z-axis from region 1 with refractive index n1 and onto a dielectric interface y = m z (for all x). To the left of this dielectric interface, the refractive index is n2.
Devise an initial value computer algorithm to determine the time evolution of the reflected and transmitted electromagnetic fields for this pulse.
e.g., n1 = 1 , n2 = 2
initial profile (t = 0, with z0 < 0) Ex = E0 exp[-a (z-z0)^2] By = n1 * Ex Choose parameters so that the pulse width is at least a fact of 8 less than the z- domain of integration ( -L < z < L).
For the slope of the interface, one could choose m = 1.
3. You have seen how Kirchhoff's laws were used in your lectures to obtain a 2nd
order differential equation where we solved for the current. This time we will
use an even simpler concept: principle of conservation of energy to derive the
2nd order differential equation where we will solve for the charge. Take a look
at the circuit below.
IHE
2F
In the circuit above, we have a capacitor with capacitance 2 F, an inductor of
inductance 5 H and a resistor of 32
(a) The total energy that is supplied to the resistor is
LI?
E =
2
Q?
20
where L is the inductance, I is the current, C is the capacitance and Q
is the charge.
Write down the total energy supplied E in terms of Q and t only.
OP
Remember that I =
dt
(b) Now you know that the power dissipation through a resistor is -1R.
Use the conservation of energy (energy gain rate = energy loss rate) to
derive the differential equation in terms Q and t only.
(c) Solve the differential equation for initial charge to be Qo with a initial
current of…
Chapter 7 Solutions
EBK DIFFERENTIAL EQUATIONS
Ch. 7.1 - Apply the definition in (1) to find directly tile...Ch. 7.1 - Prob. 2PCh. 7.1 - Prob. 3PCh. 7.1 - Prob. 4PCh. 7.1 - Prob. 5PCh. 7.1 - Prob. 6PCh. 7.1 - Prob. 7PCh. 7.1 - Prob. 8PCh. 7.1 - Prob. 9PCh. 7.1 - Prob. 10P
Ch. 7.1 - Prob. 11PCh. 7.1 - Prob. 12PCh. 7.1 - Prob. 13PCh. 7.1 - Prob. 14PCh. 7.1 - Prob. 15PCh. 7.1 - Prob. 16PCh. 7.1 - Prob. 17PCh. 7.1 - Prob. 18PCh. 7.1 - Prob. 19PCh. 7.1 - Prob. 20PCh. 7.1 - Prob. 21PCh. 7.1 - Prob. 22PCh. 7.1 - Prob. 23PCh. 7.1 - Prob. 24PCh. 7.1 - Prob. 25PCh. 7.1 - Prob. 26PCh. 7.1 - Prob. 27PCh. 7.1 - Prob. 28PCh. 7.1 - Prob. 29PCh. 7.1 - Prob. 30PCh. 7.1 - Prob. 31PCh. 7.1 - Prob. 32PCh. 7.1 - Prob. 33PCh. 7.1 - Prob. 34PCh. 7.1 - Prob. 35PCh. 7.1 - Prob. 36PCh. 7.1 - Given a0, let f(t)=1 if 0__1a,f(t)=0 if t__a....Ch. 7.1 - Given that 0ab. Let f(t)=1 if a__tb,f(t)=0 if...Ch. 7.1 - Prob. 39PCh. 7.1 - Prob. 40PCh. 7.1 - Prob. 41PCh. 7.1 - Given constants a and b. define h(t) for t__0 by...Ch. 7.2 - Prob. 1PCh. 7.2 - Prob. 2PCh. 7.2 - Prob. 3PCh. 7.2 - Prob. 4PCh. 7.2 - Prob. 5PCh. 7.2 - Prob. 6PCh. 7.2 - Prob. 7PCh. 7.2 - Prob. 8PCh. 7.2 - Prob. 9PCh. 7.2 - Prob. 10PCh. 7.2 - Prob. 11PCh. 7.2 - Prob. 12PCh. 7.2 - Prob. 13PCh. 7.2 - Prob. 14PCh. 7.2 - Prob. 15PCh. 7.2 - Prob. 16PCh. 7.2 - Prob. 17PCh. 7.2 - Prob. 18PCh. 7.2 - Prob. 19PCh. 7.2 - Prob. 20PCh. 7.2 - Prob. 21PCh. 7.2 - Prob. 22PCh. 7.2 - Prob. 23PCh. 7.2 - Prob. 24PCh. 7.2 - Prob. 25PCh. 7.2 - Prob. 26PCh. 7.2 - Prob. 27PCh. 7.2 - Prob. 28PCh. 7.2 - Prob. 29PCh. 7.2 - Prob. 30PCh. 7.2 - Prob. 31PCh. 7.2 - Prob. 32PCh. 7.2 - Prob. 33PCh. 7.2 - Prob. 34PCh. 7.2 - Prob. 35PCh. 7.2 - Prob. 36PCh. 7.2 - Prob. 37PCh. 7.3 - Prob. 1PCh. 7.3 - Prob. 2PCh. 7.3 - Prob. 3PCh. 7.3 - Prob. 4PCh. 7.3 - Prob. 5PCh. 7.3 - Prob. 6PCh. 7.3 - Prob. 7PCh. 7.3 - Prob. 8PCh. 7.3 - Prob. 9PCh. 7.3 - Prob. 10PCh. 7.3 - Prob. 11PCh. 7.3 - Prob. 12PCh. 7.3 - Prob. 13PCh. 7.3 - Prob. 14PCh. 7.3 - Prob. 15PCh. 7.3 - Prob. 16PCh. 7.3 - Prob. 17PCh. 7.3 - Prob. 18PCh. 7.3 - Prob. 19PCh. 7.3 - Prob. 20PCh. 7.3 - Prob. 21PCh. 7.3 - Prob. 22PCh. 7.3 - Prob. 23PCh. 7.3 - Prob. 24PCh. 7.3 - Prob. 25PCh. 7.3 - Prob. 26PCh. 7.3 - Prob. 27PCh. 7.3 - Prob. 28PCh. 7.3 - Prob. 29PCh. 7.3 - Prob. 30PCh. 7.3 - Prob. 31PCh. 7.3 - Prob. 32PCh. 7.3 - Prob. 33PCh. 7.3 - Prob. 34PCh. 7.3 - Prob. 35PCh. 7.3 - Prob. 36PCh. 7.3 - Prob. 37PCh. 7.3 - Prob. 38PCh. 7.3 - Problems 39 and 40 illustrate Iwo types of...Ch. 7.3 - Problems 39 and 40 illustrate Iwo types of...Ch. 7.4 - Find the convolution f(t)g(t) in Problems 1...Ch. 7.4 - Prob. 2PCh. 7.4 - Prob. 3PCh. 7.4 - Prob. 4PCh. 7.4 - Prob. 5PCh. 7.4 - Prob. 6PCh. 7.4 - Prob. 7PCh. 7.4 - Prob. 8PCh. 7.4 - Prob. 9PCh. 7.4 - Prob. 10PCh. 7.4 - Prob. 11PCh. 7.4 - Prob. 12PCh. 7.4 - Prob. 13PCh. 7.4 - Prob. 14PCh. 7.4 - Prob. 15PCh. 7.4 - Prob. 16PCh. 7.4 - Prob. 17PCh. 7.4 - Prob. 18PCh. 7.4 - Prob. 19PCh. 7.4 - Prob. 20PCh. 7.4 - Prob. 21PCh. 7.4 - Prob. 22PCh. 7.4 - Prob. 23PCh. 7.4 - Prob. 24PCh. 7.4 - Prob. 25PCh. 7.4 - Prob. 26PCh. 7.4 - Prob. 27PCh. 7.4 - Prob. 28PCh. 7.4 - Prob. 29PCh. 7.4 - Prob. 30PCh. 7.4 - Prob. 31PCh. 7.4 - Prob. 32PCh. 7.4 - Prob. 33PCh. 7.4 - Prob. 34PCh. 7.4 - Prob. 35PCh. 7.4 - Prob. 36PCh. 7.4 - Prob. 37PCh. 7.4 - Prob. 38PCh. 7.4 - Prob. 39PCh. 7.4 - Prob. 40PCh. 7.4 - Prob. 41PCh. 7.5 - Prob. 1PCh. 7.5 - Prob. 2PCh. 7.5 - Prob. 3PCh. 7.5 - Prob. 4PCh. 7.5 - Prob. 5PCh. 7.5 - Prob. 6PCh. 7.5 - Prob. 7PCh. 7.5 - Prob. 8PCh. 7.5 - Prob. 9PCh. 7.5 - Prob. 10PCh. 7.5 - Prob. 11PCh. 7.5 - Prob. 12PCh. 7.5 - Prob. 13PCh. 7.5 - Prob. 14PCh. 7.5 - Prob. 15PCh. 7.5 - Prob. 16PCh. 7.5 - Prob. 17PCh. 7.5 - Prob. 18PCh. 7.5 - Prob. 19PCh. 7.5 - Prob. 20PCh. 7.5 - Prob. 21PCh. 7.5 - Prob. 22PCh. 7.5 - Prob. 23PCh. 7.5 - Prob. 24PCh. 7.5 - Prob. 25PCh. 7.5 - Prob. 26PCh. 7.5 - Let g(t) be the staircase function of Fig. 7.5.15....Ch. 7.5 - Suppose that f(i) is a periodic function of period...Ch. 7.5 - Suppose that f(t) is the half-wave rectification...Ch. 7.5 - Let g(t)=u(tk)f(tk), where f(t) is the function of...Ch. 7.5 - Prob. 31PCh. 7.5 - Prob. 32PCh. 7.5 - Prob. 33PCh. 7.5 - Prob. 34PCh. 7.5 - Prob. 35PCh. 7.5 - Prob. 36PCh. 7.5 - Prob. 37PCh. 7.5 - Prob. 38PCh. 7.5 - Prob. 39PCh. 7.5 - Prob. 40PCh. 7.5 - Prob. 41PCh. 7.5 - Prob. 42PCh. 7.6 - Prob. 1PCh. 7.6 - Prob. 2PCh. 7.6 - Prob. 3PCh. 7.6 - Prob. 4PCh. 7.6 - Prob. 5PCh. 7.6 - Prob. 6PCh. 7.6 - Prob. 7PCh. 7.6 - Prob. 8PCh. 7.6 - Prob. 9PCh. 7.6 - Prob. 10PCh. 7.6 - Prob. 11PCh. 7.6 - Prob. 12PCh. 7.6 - Prob. 13PCh. 7.6 - Prob. 14PCh. 7.6 - This problem deals with a mass in on a spring...Ch. 7.6 - Prob. 16PCh. 7.6 - Prob. 17PCh. 7.6 - Prob. 18PCh. 7.6 - Prob. 19PCh. 7.6 - Repeat Problem 19, except suppose that the switch...Ch. 7.6 - Prob. 21PCh. 7.6 - Prob. 22P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Questions 1. Special electrical circuits called LC circuits are critical to the operation of the tuning dial on a car radio. The charge Q(t) (measured in units of Coulombs C) in an LC circuit at any given time t (measured in seconds s) subject to a given voltage V(t) (given in Joules per Coulomb, J/C) obeys the expression LQ" (t) + + =—= Q(t) = = V(t) where L, c are given constants depending on the particular design of the circuit. What are the units of L and c? ⚫L and care unit-less. ⚫ The units of L are Js2/C2 and the units of c are J/C². • The units of L are Js2/C2 and the units of c are C²/J. ⚫ The units of L are J/C2 and the units of c are C²/J. ⚫ The units of L are J/C² and the units of c are J/C². 1 of 7 2. Matt collects vinyl records, but he doesn't always keep every record he buys. Let K(t) be the total number of vinyl records Matt has kept from the moment he started collecting up to week t, where t is the number of weeks since January 1, 2024. Which of the statements below is…arrow_forwardA tube 1.30 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.357 m long and has a mass of 9.50 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the speed of sound in air is 343 m/s, find (a) that frequency and (b) the tension in the wire. (a) Number i 66.0 (b) Number i Units Hz Unitsarrow_forward9. Show that De Morgan's Law applies to Boolean algebra, by showing that for all x and y, (x ⋁ y)’ =x’ ⋀ y’ dan (x ⋀ y)’ = x’ ⋁ y’arrow_forward
- The displacement of an oscillating spring can be described by x = A cos(wt) where x = displacement at time t, A = maximum displacement, w = angular frequency, which depends on the spring constant and the mass attached to the spring, and t = time. Find the displacement, x, with maximum displacement A of 4 cm, for times from 0 to 120 seconds with increments of 30 seconds, and angular frequencies from 0.4 to 0.6 radians/sec, with increments of 0.1 radians/sec. The displacement for all combinations of times and angular frequencies needs to be calculated. Use meshgrid. Display your results in a matrix with angular frequencies along the top row and times along the left column like so (you may put zero, 0, or NaN, in the upper left corner:arrow_forwardFind the charge q(t) on the capacitor and the current i(t) in the given LRC-series circuit. L = 5 1 h, R10, C = f, E(t) = 800 V, 9(0) = 0 C, i(0) = 0 A 4 40 q(t) = i(t) = A C Find the maximum charge on the capacitor. (Round your answer to three decimal places.) сarrow_forwardFind the impedance theoretically of a wire if it carries the frequency 10 kHz have a voltage is 8v, the current is 2mA, resistance is 13 k, inductance 29 mH and capacitance 0.1 ufarrow_forward
- An aluminum wire having a cross-sectional area equal to 4.60 x 10-6 m? carries a current of 7.50 A. The density of aluminum is 2.70 g/cm³. Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire. 1.95E-4 The equation for the drift velocity includes the number of charge carriers per volume, which in this case is equal to the number of atoms per volume. How do you calculate that if you know the density and the atomic weight of aluminum? mm/sarrow_forward.The Boolean function f(w, x, y, z)= m(5,7,9,11,13,15) is independent of variablesarrow_forwardIn the Bohr model of the hydrogen atom, an electron in the 4th excited state moves at a speed of 1.37 x 105 m/s in a circular path of radius 8.46 x 1010 m. What is the effective current associated with this orbiting electron? 4.12373E3 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. mAarrow_forward
- 13. Construct a finite-state machine for a toll machine that opens a gate after 25 cents, in nickels, dimes, or quar- ters, has been deposited. No change is given for overpay- ment, and no credit is given to the next driver when more than 25 cents has been deposited.arrow_forward- For the following logic functions find their minimal SOP using Karnaugh maps. (a) F =Σx,y,z(1,3,5,6,7) (c) F=Пwxy(1,4,5, 6, 7) (e) F = ПIA.B.C.D(4, 5, 6, 13,15) (b) F=Σw.X.YZ(1,4,5,6,7,9,14,15) (d) FΣw.x.Y.z(0,1,6,7,8,9,14,15) (f) FΣA.B.C.D(4,5,6, 11, 13,14,15)arrow_forward2. (a) Compute and simplify f = (xz+ (y+t)' + (xz)'y')' Encircle final answer! (b) Prove or disprove that in any Boolean algebra, B: (i) 0' = 1 (ii) 1' = 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole