Concept explainers
Use the result of Problem 66 to show that if the minimum monthly payments are always calculated the same way and the borrower never pays more than the minimum that the loan will technically never reach a zero balance. Then explain why that doesn’t mean that realistically it won’t ever be paid off.
66. Here’s another approach to the calculation in Example 8. It’s actually like a savings account with negative interest: instead of 1% of the amount being added each compounding period (month in this case), 1% is being subtracted from the amount. Use the compound interest formula with a principal balance of $2,300 and interest of −1% per month compounded monthly for 6 months. How does the result compare to the calculations in Example 8?
EXAMPLE 8 Studying the Effect of Making Minimum Payments
Suppose you have a $2,300 balance on a credit card with an interest rate of 1.1% per month, and the minimum payment for any month is the amount of interest plus 1% of the principal balance. If you don’t make any more purchases on that card and make the minimum payment for 6 months, how much will you pay down the balance?
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Connect Math Hosted by ALEKS Access Card 52 Weeks for Quantitative Literacy
- The correct answer is D Could you explain and show the steps pleasearrow_forwardAre the two statements A and B equivalent? (A) p~q (B) ~pq ☐ Statement A and B are equivalent. ☐ Statement A and B are not equivalent as their values in three rows are not identical. ☐ Statement A and B are not equivalent as their values in one row is not identical. ☐ Statement A and B are not equivalent as their values in two row are not identical.arrow_forwardLet p, q and r to be True, False and True statements, respectively. What are the values of the statements below. A: B: [(p→q)^~q]→r (pvq) → ~r O O A: False B: False A: True B: True A: False B: True A: True B: Falsearrow_forward
- Let's assume p and q are true statements. What are the values of the statements below. A: (p→ q) →~p B: (p v~q) → ~(p^q) A: True B: False A: True B: True ☐ A: A: False B: False ☐ A: False B: Truearrow_forwardThree statements A, B and C are given below. Which choice is correct? (A) ~(p^~q) (B) ~p^q (c) pv~q ☐ All statements are inequivalent. ☐ Only statements A and B are equivalent. ☐ Only statements C and B are equivalent. ☐ Only statements A and C are equivalent.arrow_forward6: 000 Which truth table is correct for the given compound statement? (pvq)^p]→q A: B: P P 9 [(pvq)^p]→ 9 T T F T T T T F T T F F F T T F T F F F T F F T C: P 9 [(pvq)^p]→9 D: P 9 [pvq)^p]→9 T T T T T T TF T T F F F T F F T T F F F F F T B A D Previous Page Next Page Page 3 of 11arrow_forward
- st One Which truth table is correct for the given compound statement? (p→q)^~p A: P q (p→q)^~p B: P q (p→q)^~p T T F T T F T F F T F T F T T F T T F F F F F T C: D: P q (p→ q)^~p P 9 (p→q)^~p T T F T T T T F F T F F F T T F T T F F T F F T A U Oarrow_forward2) Find the general solution to the following differential equation. d²x dt² - dx 6 +25x = 64e¯* dtarrow_forward1) Solve the following initial value problem. y' + xy = x y(0) = −1arrow_forward
- 4.8^2^x^+1=32^x^+2arrow_forwardCalculate gross pay for each employee. All are paid overtime wage rates that are 1.5 times their respective regular wage rates. should be rounded to two decimal places at each calculation.arrow_forwardTaylor Series Approximation Example- H.W More terms used implies better approximation f(x) 4 f(x) Zero order f(x + 1) = f(x;) First order f(x; + 1) = f(x;) + f'(x;)h 1.0 Second order 0.5 True f(x + 1) = f(x) + f'(x)h + ƒ"(x;) h2 2! f(x+1) 0 x; = 0 x+1 = 1 x h f(x)=0.1x4-0.15x³- 0.5x2 -0.25x + 1.2 51 Taylor Series Approximation H.w: Smaller step size implies smaller error Errors f(x) + f(x,) Zero order f(x,+ 1) = f(x) First order 1.0 0.5 Reduced step size Second order True f(x + 1) = f(x) + f'(x)h f(x; + 1) = f(x) + f'(x)h + "(xi) h2 f(x,+1) O x₁ = 0 x+1=1 Using Taylor Series Expansion estimate f(1.35) with x0 =0.75 with 5 iterations (or & s= 5%) for f(x)=0.1x 0.15x³-0.5x²- 0.25x + 1.2 52arrow_forward
- Intermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning