Given v = 4 , − 3 and w = 2 , − 2 , a. Find proj w v . b. Find vectors v 1 and v 2 such that v 1 , is parallel to w, v 2 is orthogonal to w, and v 1 + v 2 = v . c. Using the results from part (b) show that v 1 is parallel to w by finding a constant c such that v 1 = c w . d. Show that v 2 is orthogonal to w. e. Show that v 1 + v 2 = v .
Given v = 4 , − 3 and w = 2 , − 2 , a. Find proj w v . b. Find vectors v 1 and v 2 such that v 1 , is parallel to w, v 2 is orthogonal to w, and v 1 + v 2 = v . c. Using the results from part (b) show that v 1 is parallel to w by finding a constant c such that v 1 = c w . d. Show that v 2 is orthogonal to w. e. Show that v 1 + v 2 = v .
Solution Summary: The author calculates the vector projection v=4,-3andw =2,-2.
b. Find vectors
v
1
and
v
2
such that
v
1
, is parallel to w,
v
2
is orthogonal to w, and
v
1
+
v
2
=
v
.
c. Using the results from part (b) show that
v
1
is parallel to w by finding a constant c such that
v
1
=
c
w
.
d. Show that
v
2
is orthogonal to w.
e. Show that
v
1
+
v
2
=
v
.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
For the following function f and real number a,
a. find the slope of the tangent line mtan
=
f' (a), and
b. find the equation of the tangent line to f at x = a.
f(x)=
2
=
a = 2
x2
a. Slope:
b. Equation of tangent line: y
College Algebra with Modeling & Visualization (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.