Given v = − 3 , 6 and w = 1 , 3 , a. Find proj w v . (See Example 4) b. Find vectors v 1 and v 2 such that v 1 , is parallel to w, v 2 is orthogonal to w, and v 1 + v 2 = v . c. Using the results from part (b) show that v 1 is parallel to w by finding a constant c such that v 1 = c w . d. Show that v 2 is orthogonal to w. e. Show that v 1 + v 2 = v .
Given v = − 3 , 6 and w = 1 , 3 , a. Find proj w v . (See Example 4) b. Find vectors v 1 and v 2 such that v 1 , is parallel to w, v 2 is orthogonal to w, and v 1 + v 2 = v . c. Using the results from part (b) show that v 1 is parallel to w by finding a constant c such that v 1 = c w . d. Show that v 2 is orthogonal to w. e. Show that v 1 + v 2 = v .
Solution Summary: The author explains how to calculate the vector projection of v=-3,6andw =1,3.
b. Find vectors
v
1
and
v
2
such that
v
1
, is parallel to w,
v
2
is orthogonal to w, and
v
1
+
v
2
=
v
.
c. Using the results from part (b) show that
v
1
is parallel to w by finding a constant c such that
v
1
=
c
w
.
d. Show that
v
2
is orthogonal to w.
e. Show that
v
1
+
v
2
=
v
.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Use the properties of logarithms, given that In(2) = 0.6931 and In(3) = 1.0986, to approximate the logarithm. Use a calculator to confirm your approximations. (Round your answers to four decimal places.)
(a) In(0.75)
(b) In(24)
(c) In(18)
1
(d) In
≈
2
72
Find the indefinite integral. (Remember the constant of integration.)
√tan(8x)
tan(8x) sec²(8x) dx
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.