
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
8th Edition
ISBN: 9781259676512
Author: Kenneth H Rosen
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7.4, Problem 48E
To determine
What is the expected number of balls that fall into the first bin when
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
can I see the steps for how you got the same answers already provided for μ1->μ4. this is a homework that provide you answers for question after attempting it three tries
1. Prove that for each n in N, 1+2++ n = n(n+1)/2.
2. Prove that for each n in N, 13 +23+
3. Prove that for each n in N, 1+3+5+1
4. Prove that for each n ≥ 4,2" -1, then (1+x)" ≥1+nx for each
n in N.
11. Prove DeMoivre's Theorem: fort a real number,
(cost+i sint)" = cos nt + i sinnt
for each n in N, where i = √√-1.
Given the following sample data values:
7, 12, 15, 9, 15, 13, 12, 10, 18,12
Find the following:
a) Σ
x=
b) x² =
c) x =
n
d) Median
=
e) Midrange
x
=
(Enter a whole number)
(Enter a whole number)
(use one decimal place accuracy)
(use one decimal place accuracy)
(use one decimal place accuracy)
f) the range=
g) the variance, s²
(Enter a whole number)
f) Standard Deviation, s =
(use one decimal place accuracy)
Use the formula s²
·Σx² -(x)²
n(n-1)
nΣ x²-(x)²
2
Use the formula s =
n(n-1)
(use one decimal place accuracy)
Chapter 7 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Ch. 7.1 - i. What is the probability that a card selected at...Ch. 7.1 - t istheprobability that a fair die comes up six...Ch. 7.1 - t is the probability that a randomly selected...Ch. 7.1 - What is the probability7that a randomly selected...Ch. 7.1 - t is the probability that the sum of the numbers...Ch. 7.1 - t is the probability that a card selected at...Ch. 7.1 - t is the probability that when a coin is flipped...Ch. 7.1 - t is the probability that a five-card poker hand...Ch. 7.1 - t is the probability that a five-card poker hand...Ch. 7.1 - t is the probability that a five-card poker hand...
Ch. 7.1 - Prob. 11ECh. 7.1 - t is the probability that afive-card poker hand...Ch. 7.1 - t is the probability tliat afive-card poker hand...Ch. 7.1 - t istheprobability that a five-card poker hand...Ch. 7.1 - t is theprobabilifrthatafive-cardpoker hand...Ch. 7.1 - t is the probability7that a five-card poker hand...Ch. 7.1 - Prob. 17ECh. 7.1 - Mat is the probability' that a five-card poker...Ch. 7.1 - Prob. 19ECh. 7.1 - probabihh’thatafiM^Ch. 7.1 - Prob. 21ECh. 7.1 - t is the probability that a positive integer not...Ch. 7.1 - t is the probability that a positive integer not...Ch. 7.1 - Prob. 24ECh. 7.1 - - Find the probability of winning a lottery by...Ch. 7.1 - 26.Find the pr obabilitj- of selecting none of the...Ch. 7.1 - Prob. 27ECh. 7.1 - Prob. 28ECh. 7.1 - Prob. 29ECh. 7.1 - Prob. 30ECh. 7.1 - Prob. 31ECh. 7.1 - Prob. 32ECh. 7.1 - i$theprobabilitytiiatAbby,Barry,andSy^...Ch. 7.1 - 34.Mat is the probability' that Bo, Colleen, Jeff,...Ch. 7.1 - roulette, a wheel with 38 numbers is spun. Of...Ch. 7.1 - ch is more likely: rolling a total of 8 when two...Ch. 7.1 - ch is more likely: rolling a total of 9 when hvo...Ch. 7.1 - A player in the Mega Millions lottery picks five...Ch. 7.1 - a player buys a Mega Millions ticket in many...Ch. 7.1 - A player in the Powerball lottery picks five...Ch. 7.1 - Aplayer in the Powerball lottery (see Exercise 40)...Ch. 7.1 - Two events E i and E2are calledindependentifp(Etfl...Ch. 7.1 - Prob. 43ECh. 7.1 - Suppose that instead of three doors, there are...Ch. 7.1 - s problem was posed by the Chevalier de Mere and...Ch. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - w that conditions (2) and (22) are met under...Ch. 7.2 - A pair of dice is loaded. The probability that a 4...Ch. 7.2 - t is the probability of these events when we...Ch. 7.2 - t is the probability of these events when we...Ch. 7.2 - 8.What is the probability of these events when we...Ch. 7.2 - t is the probability of these events when we...Ch. 7.2 - What is the probability of these events when we...Ch. 7.2 - pose, that £ and F are. events such that d(£)=0.7...Ch. 7.2 - pose that £ and Fare events such thatp(£) = 0.8...Ch. 7.2 - w that if £ and F are events, thenpfEn F) >p(E) +...Ch. 7.2 - Use mathematical induction to prove the following...Ch. 7.2 - w that if £x, £2,Enare events from afinite sample...Ch. 7.2 - Show that iff and f are independent events,...Ch. 7.2 - 17,It £ and F are independent events, prove or...Ch. 7.2 - What is the probability that hvo people chosen at...Ch. 7.2 - Mat is the probability that two people chosen at...Ch. 7.2 - Prob. 20ECh. 7.2 - Prob. 21ECh. 7.2 - February 29 occurs only inleap years, Years...Ch. 7.2 - ^Tiat is the conditional probabilitv that exactly...Ch. 7.2 - What is the. conditional probabilih' that exactly...Ch. 7.2 - Prob. 25ECh. 7.2 - Let Ebe the event that aranmly generated bit...Ch. 7.2 - Prob. 27ECh. 7.2 - a8. Assume that the probability a child is a boy...Ch. 7.2 - A group of six people play the game of “ odd...Ch. 7.2 - Find the probability that a randomly generated bit...Ch. 7.2 - Find the probability that a family with five...Ch. 7.2 - Prob. 32ECh. 7.2 - Prob. 33ECh. 7.2 - Find each of the following probabilities...Ch. 7.2 - d each of the following probabilities...Ch. 7.2 - Prob. 36ECh. 7.2 - Prob. 37ECh. 7.2 - 38.A pair of dice is rolled in a remote location...Ch. 7.2 - This exercise employs the probabilistic method to...Ch. 7.2 - Dense a Monte Carlo algorithm that determines...Ch. 7.2 - pseudocode to write out the probabilistic...Ch. 7.3 - i.Suppose that £ andFare events in a sample space...Ch. 7.3 - Suppose that Land Fare events in a sample space...Ch. 7.3 - 3.Suppose that Frida selects a ball by first...Ch. 7.3 - 4.Suppo s e that Ann selects a ball by first...Ch. 7.3 - Prob. 5ECh. 7.3 - Prob. 6ECh. 7.3 - Prob. 7ECh. 7.3 - 8,Suppose that one person in 10,000 people has a...Ch. 7.3 - Suppose that 8% of the patients tested in a clinic...Ch. 7.3 - io,Suppose that 4% of the patients tested in a...Ch. 7.3 - ...Ch. 7.3 - ...Ch. 7.3 - Prob. 13ECh. 7.3 - Prob. 14ECh. 7.3 - In this exercise we will use Bayes' theorem to...Ch. 7.3 - Prob. 16ECh. 7.3 - Prob. 17ECh. 7.3 - 18.Suppose that a Bayesian spam filter is trained...Ch. 7.3 - 19,Suppose that a Bayesian spam filter is trained...Ch. 7.3 - Prob. 20ECh. 7.3 - ,Suppose that a Bayesian spam filter is trained on...Ch. 7.3 - Suppose that we have prior information concerning...Ch. 7.3 - Prob. 23ECh. 7.4 - t is the expected number of heads that come up...Ch. 7.4 - t is the expected number of heads that come up...Ch. 7.4 - t is the expected number of times a 6 appears when...Ch. 7.4 - A coin is biased so that the probability a head...Ch. 7.4 - ^Tiat is the expected sum of the numbers that...Ch. 7.4 - Prob. 6ECh. 7.4 - final exam of a discrete mathematics course...Ch. 7.4 - t is the expected sum of the numbers that appear...Ch. 7.4 - Prob. 9ECh. 7.4 - Suppose that we flip a fair coin until either it...Ch. 7.4 - Suppose that we roll a fair die until a 6 conies...Ch. 7.4 - pose that we roll a fair die until a 6 comes up....Ch. 7.4 - pose thatwerollapairoffair dice...Ch. 7.4 - Show that the sum of the probabilities of a random...Ch. 7.4 - Show that if the random variable A'has the...Ch. 7.4 - Prob. 16ECh. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - Prob. 19ECh. 7.4 - Show that if J2,...,Xnare mutually independent...Ch. 7.4 - What is the expected value of the sum of the...Ch. 7.4 - as.Provethelaw of total expectations.Ch. 7.4 - Prob. 23ECh. 7.4 - Prob. 24ECh. 7.4 - A run is a maximal sequence of successes in a...Ch. 7.4 - a6.Let J(s) be a random variable, where I(s) is a...Ch. 7.4 - What is the variance of the number of heads that...Ch. 7.4 - t is the variance ot the number of times a 6...Ch. 7.4 - LetXnbe the random variable that equals the number...Ch. 7.4 - w that ifXand Fare independent random variables,...Ch. 7.4 - Prob. 31ECh. 7.4 - Pronde an example that shows that the variance of...Ch. 7.4 - pose that A\ andX2are independent Bernoulli trials...Ch. 7.4 - Prove the general caseofTheoremy. That is, show...Ch. 7.4 - Prob. 35ECh. 7.4 - Prob. 36ECh. 7.4 - Prob. 37ECh. 7.4 - pose that the number of cans of soda pop filled in...Ch. 7.4 - 39.Suppose that the number of aluminum cans...Ch. 7.4 - pose the probabilitvthatxis the...Ch. 7.4 - In this exercise we derive an estimate of the...Ch. 7.4 - Prob. 42ECh. 7.4 - to is the variance of the number of fixed...Ch. 7.4 - Prob. 44ECh. 7.4 - Prob. 45ECh. 7.4 - Prob. 46ECh. 7.4 - Prob. 47ECh. 7.4 - Prob. 48ECh. 7.4 - Prob. 49ECh. 7 - Define the probability of an event when all...Ch. 7 - WTiat conditions should be met by the...Ch. 7 - Define, the conditional probability’ of an event £...Ch. 7 - Prob. 4RQCh. 7 - tois a random variable? toare the possible values...Ch. 7 - Prob. 6RQCh. 7 - Explain how the average-case computational...Ch. 7 - Prob. 8RQCh. 7 - What does the linearity of expectations of random...Ch. 7 - Prob. 10RQCh. 7 - Prob. 11RQCh. 7 - Prob. 12RQCh. 7 - Prob. 13RQCh. 7 - What is the variance of the sum of n independent...Ch. 7 - Prob. 15RQCh. 7 - Prob. 1SECh. 7 - 2012, a player in the Mega Millions lottery picks...Ch. 7 - 2012, a player in the Powerball lottery picks five...Ch. 7 - t is the probability that a hand of 13 cards...Ch. 7 - t is the probability that a 13-card bridge hand...Ch. 7 - t is the probability that a seven-card poker hand...Ch. 7 - What is the expected value of the number that...Ch. 7 - What is the expected value of the number that...Ch. 7 - Suppose that a pair of fair octahedral dice is...Ch. 7 - io.Suppose that a pair offaiir dodecahedral diceis...Ch. 7 - ii.Supp o s e that a fair standard (cubic) die and...Ch. 7 - Prob. 12SECh. 7 - (mpeople!n>3!play“oddp™ut’todeadeMo^...Ch. 7 - Prob. 14SECh. 7 - posethatmandnarepositiYeintegers.Bat is...Ch. 7 - pose thatEt, E2,Enarenevents with p(£j) >o fori...Ch. 7 - Prob. 17SECh. 7 - t is the probability that when a fair coin is...Ch. 7 - t is the probability that a randomly selected bit...Ch. 7 - t is the probability that a randomly selected bit...Ch. 7 - sider the following game. A per son flips a coin...Ch. 7 - pose that n halls are tossed intobbins so that...Ch. 7 - posethatAandBareeventswthprobabilitiesp(A) =...Ch. 7 - posethat/l andB are events...Ch. 7 - all fromDefinition jinSection 7,2that the events...Ch. 7 - ...Ch. 7 - Prob. 27SECh. 7 - Prob. 28SECh. 7 - Prob. 29SECh. 7 - Prob. 30SECh. 7 - Prob. 31SECh. 7 - Prob. 32SECh. 7 - Prob. 33SECh. 7 - maximum satisfiability problemasks for an...Ch. 7 - Prob. 35SECh. 7 - The following method can be used to generate a...Ch. 7 - Prob. 1CPCh. 7 - Prob. 2CPCh. 7 - Prob. 3CPCh. 7 - Prob. 4CPCh. 7 - Prob. 5CPCh. 7 - ...Ch. 7 - Prob. 7CPCh. 7 - Prob. 8CPCh. 7 - Prob. 9CPCh. 7 - ulaterepeated trials oftheMoufr Hall Three-Door...Ch. 7 - Prob. 11CPCh. 7 - Prob. 1CAECh. 7 - Prob. 2CAECh. 7 - Prob. 3CAECh. 7 - Prob. 4CAECh. 7 - Prob. 5CAECh. 7 - Prob. 6CAECh. 7 - Prob. 7CAECh. 7 - Prob. 8CAECh. 7 - cribe the origins of probability theory and the...Ch. 7 - Prob. 2WPCh. 7 - 3.Discuss the probability' of winning when you...Ch. 7 - estigate the game of craps and discuss the...Ch. 7 - Prob. 5WPCh. 7 - Prob. 6WPCh. 7 - lain how Erdos and Renvi first used the...Ch. 7 - cuss the different types of probabilistic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Table of hours of television watched per week: 11 15 24 34 36 22 20 30 12 32 24 36 42 36 42 26 37 39 48 35 26 29 27 81276 40 54 47 KARKE 31 35 42 75 35 46 36 42 65 28 54 65 28 23 28 23669 34 43 35 36 16 19 19 28212 Using the data above, construct a frequency table according the following classes: Number of Hours Frequency Relative Frequency 10-19 20-29 |30-39 40-49 50-59 60-69 70-79 80-89 From the frequency table above, find a) the lower class limits b) the upper class limits c) the class width d) the class boundaries Statistics 300 Frequency Tables and Pictures of Data, page 2 Using your frequency table, construct a frequency and a relative frequency histogram labeling both axes.arrow_forwardTable of hours of television watched per week: 11 15 24 34 36 22 20 30 12 32 24 36 42 36 42 26 37 39 48 35 26 29 27 81276 40 54 47 KARKE 31 35 42 75 35 46 36 42 65 28 54 65 28 23 28 23669 34 43 35 36 16 19 19 28212 Using the data above, construct a frequency table according the following classes: Number of Hours Frequency Relative Frequency 10-19 20-29 |30-39 40-49 50-59 60-69 70-79 80-89 From the frequency table above, find a) the lower class limits b) the upper class limits c) the class width d) the class boundaries Statistics 300 Frequency Tables and Pictures of Data, page 2 Using your frequency table, construct a frequency and a relative frequency histogram labeling both axes.arrow_forwardA study was undertaken to compare respiratory responses of hypnotized and unhypnotized subjects. The following data represent total ventilation measured in liters of air per minute per square meter of body area for two independent (and randomly chosen) samples. Analyze these data using the appropriate non-parametric hypothesis test. Unhypnotized: 5.0 5.3 5.3 5.4 5.9 6.2 6.6 6.7 Hypnotized: 5.8 5.9 6.2 6.6 6.7 6.1 7.3 7.4arrow_forward
- 13arrow_forward7arrow_forwardEvaluate the double integral ' √ √ (−2xy² + 3ry) dA R where R = {(x,y)| 1 ≤ x ≤ 3, 2 ≤ y ≤ 4} Double Integral Plot of integrand and Region R N 120 100 80- 60- 40 20 -20 -40 2 T 3 4 5123456 This plot is an example of the function over region R. The region and function identified in your problem will be slightly different. Answer = Round your answer to four decimal places.arrow_forward
- Find the values of p for which the series is convergent. P-?- ✓ 00 Σ nº (1 + n10)p n = 1 Need Help? Read It Watch It SUBMIT ANSWER [-/4 Points] DETAILS MY NOTES SESSCALCET2 8.3.513.XP. Consider the following series. 00 Σ n = 1 1 6 n° (a) Use the sum of the first 10 terms to estimate the sum of the given series. (Round the answer to six decimal places.) $10 = (b) Improve this estimate using the following inequalities with n = 10. (Round your answers to six decimal places.) Sn + + Los f(x) dx ≤s ≤ S₁ + Jn + 1 + Lo f(x) dx ≤s ≤ (c) Using the Remainder Estimate for the Integral Test, find a value of n that will ensure that the error in the approximation s≈s is less than 0.0000001. On > 11 n> -18 On > 18 On > 0 On > 6 Need Help? Read It Watch Itarrow_forward√5 Find Lª³ L² y-are y- arctan (+) dy dydx. Hint: Use integration by parts. SolidUnderSurface z=y*arctan(1/x) Z1 2 y 1 1 Round your answer to 4 decimal places.arrow_forwardFor the solid lying under the surface z = √√4-² and bounded by the rectangular region R = [0,2]x[0,2] as illustrated in this graph: Double Integral Plot of integrand over Region R 1.5 Z 1- 0.5- 0 0.5 1 1.5 205115 Answer should be in exact math format. For example, some multiple of .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage


College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License