For Exercises 11-16, vector v has initial point P and terminal point Q. Vector w has initial point R and terminal point S. (See Example 1) a. Find the magnitude of v. b. Find the magnitude of w. c. Determine whether v = w and explain your reasoning. P 4 , − 1 , Q 7 , − 6 and R 5 , 7 , S 2 , 12
For Exercises 11-16, vector v has initial point P and terminal point Q. Vector w has initial point R and terminal point S. (See Example 1) a. Find the magnitude of v. b. Find the magnitude of w. c. Determine whether v = w and explain your reasoning. P 4 , − 1 , Q 7 , − 6 and R 5 , 7 , S 2 , 12
Solution Summary: The author calculates the magnitude of v, which has an initial point, P(4,-1), and a terminal point.
For Exercises 11-16, vector v has initial point P and terminal point Q. Vector w has initial point R and terminal point S. (See Example 1)
a. Find the magnitude of v.
b. Find the magnitude of w.
c. Determine whether
v
=
w
and explain your reasoning.
P
4
,
−
1
,
Q
7
,
−
6
and
R
5
,
7
,
S
2
,
12
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
2. (5 points) Let f(x) =
=
-
-
- x² − 3x+7. Find the local minimum and maximum point(s)
of f(x), and write them in the form (a, b), specifying whether each point is a minimum
or maximum. Coordinates should be kept in fractions.
Additionally, provide in your answer if f(x) has an absolute minimum or maximum
over its entire domain with their corresponding values. Otherwise, state that there is no
absolute maximum or minimum. As a reminder, ∞ and -∞ are not considered absolute
maxima and minima respectively.
Let h(x, y, z)
=
—
In (x) — z
y7-4z
-
y4
+ 3x²z — e²xy ln(z) + 10y²z.
(a) Holding all other variables constant, take the partial derivative of h(x, y, z) with
respect to x, 2 h(x, y, z).
მ
(b) Holding all other variables constant, take the partial derivative of h(x, y, z) with
respect to y, 2 h(x, y, z).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.