(a)
Interpretation: the intermolecular forces presented in the given molecules
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
To determine: intermolecular forces presented in
(b)
Interpretation: the intermolecular forces presented in the given molecules
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
To determine: intermolecular forces presented in
(c)
Interpretation: the intermolecular forces presented in the given molecules
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
To determine: intermolecular forces presented in
(d)
Interpretation: the intermolecular forces presented in the given molecules
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
To determine: intermolecular forces presented in
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Chemistry: Atoms First
- A sample of aluminum (face-centered cubic - FCC) has a density of 2.695 mg/m3 and a lattice parameter of 4.04958 Å. Calculate the fraction of vacancies in the structure. (Atomic weight of aluminum: 26.981).arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardWhich of the following species is a valid resonance structure of A? Use curved arrows to show how A is converted to any valid resonance structure. When a compound is not a valid resonance structurc of A, explain why not. Provide steps and tips on what to look for to understand how to solve and apply to other problems.arrow_forwardN IZ Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 HN Molecule 3 Х HN www. Molecule 4 Molecule 5 Molecule 6 none of the above NH NH Garrow_forward
- Show work with explanation. don't give Ai generated solutionarrow_forwardFollow the curved arrows to draw a second resonance structure for each species. Explain and steps for individual understanding.arrow_forwardDraw all reasonable resonance structures for the following cation. Then draw the resonance hybrid. Provide steps and explanationarrow_forward
- How are the molecules or ions in each pair related? Classify them as resonance structures, isomers, or neither.arrow_forwardWhich of the given resonance structures (A, B, or C) contributes most to the resonance hybrid? Which contributes least? Provide steps and explanationarrow_forwardPLEASE HELP NOW URGENT!arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax