Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.3, Problem 7.3GI
A bowling ball is tied to the end of a long rope and suspended from the ceiling. A student stands at one side of the room and holds the ball to her nose, then releases it from rest. Should she duck as it swings back? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A horizontal water jet of constant velocity V from a stationary nozzle impinges normally on a vertical flat plate that rides on a nearly frictionless track. As the water jet hits the plate, it begins to move due to the water force. What is the highest velocity the plate can attain? Explain.
A block of mass m = 0.04 kg slides across a frictionless horizontal surface with an initial speed of v = 2.9
m/s. It stops when it collides and compresses a spring that is attached to a wall. How much will the
spring compress if the force constant k is 145 N/ m?
a) x = 30.4863 cm
b) x =0.232 cm
c) x = 105.125 cm
%3D
d) x =4.8166 cm
Grab a meter stick or any uniform thin piece of wood about 1m in length. (e.g. the handle of a broom
with the head removed). Place your index fingers at either end so that you are holding the stick up with
just two fingers. Move your fingers slowly together. Where do they end up? Describe the motion of your
fingers. Explain why this happens.
Chapter 7 Solutions
Essential University Physics
Ch. 7.1 - Suppose it takes the same amount of work to push a...Ch. 7.2 - Gravitational force actually decreases with...Ch. 7.3 - A bowling ball is tied to the end of a long rope...Ch. 7.4 - For which of the following systems is (1)...Ch. 7.5 - A bowling ball is tied to the end of a long rope...Ch. 7.6 - The figure shows the potential energy associated...Ch. 7 - Figure 7.14 shows force vectors at different...Ch. 7 - Is the conservation-of-mechanical-energy principle...Ch. 7 - Why cant we define a potential energy associated...Ch. 7 - Can potential energy be negative? Can kinetic...
Ch. 7 - If the potential energy is zero at a given point,...Ch. 7 - If the difference in potential energy between two...Ch. 7 - If the difference in potential energy between two...Ch. 7 - If conservation of energy is a law of nature, why...Ch. 7 - Determine the work you would have to do to move a...Ch. 7 - Now lake Fig. 7.15 lo lie in a vertical plane, and...Ch. 7 - Rework Example 7.1, now taking the zero of...Ch. 7 - Find the potential energy associated with a 70-kg...Ch. 7 - You fly from Bostons Logan Airport, at sea level,...Ch. 7 - How much energy can be stored in a spring with k =...Ch. 7 - How far would you have to stretch a spring with k...Ch. 7 - A biophysicist grabs the ends of a DNA strand with...Ch. 7 - A skier starts down a frictionless 32 slope. After...Ch. 7 - A 10,000-kg Navy jet lands on an aircraft carrier...Ch. 7 - A 120-g arrow is shot vertically from a bow whose...Ch. 7 - In a railroad yard, a 35,000-kg boxcar moving at...Ch. 7 - You work for a toy company, and youre designing a...Ch. 7 - A 54-kg ice skater pushes off the wall of the...Ch. 7 - Prob. 23ECh. 7 - A particle slides along the frictionless track...Ch. 7 - A particle slides back and forth on a frictionless...Ch. 7 - A particle is trapped in a potential well...Ch. 7 - Example 7.3: A climbing rope is designed to exert...Ch. 7 - Example 7.3: A climbing rope exerts a force given...Ch. 7 - Example 7.3: The force on an electron in an...Ch. 7 - Example 7.3: The potential energy of an electron...Ch. 7 - Prob. 31ECh. 7 - Prob. 32ECh. 7 - Example 7.5: In a railroad switchyard, a rail car...Ch. 7 - Prob. 34ECh. 7 - The reservoir at Northfield Mountain Pumped...Ch. 7 - A carbon monoxide molecule can be modeled as a...Ch. 7 - A more accurate expression for the force law of...Ch. 7 - For small stretches, the Achilles tendon can be...Ch. 7 - A particle moves along the x-axis under the...Ch. 7 - As a highway engineer, youre asked to design a...Ch. 7 - A spring of constant k, compressed a distance x,...Ch. 7 - A child is on a swing whose 3.2-m-long chains make...Ch. 7 - With x x0 = h and a = g, Equation 2.11 gives the...Ch. 7 - The nuchal ligament is a cord-like structure that...Ch. 7 - A 200-g block slides back and forth on a...Ch. 7 - Automotive standards call for bumpers that sustain...Ch. 7 - A block slides on the frictionless loop-the-loop...Ch. 7 - The maximum speed of the pendulum bob in a...Ch. 7 - A mass m is dropped from height h above the top of...Ch. 7 - A particle with total energy 3.5 J is trapped in a...Ch. 7 - (a) Derive an expression for the potential energy...Ch. 7 - In ionic solids such as NaCl (salt), the potential...Ch. 7 - Repeat Exercise 19 for the case when the...Ch. 7 - As an energy-efficiency consultant, youre asked to...Ch. 7 - A spring of constant k = 340 N/m is used to launch...Ch. 7 - A bug slides back and forth in a bowl 15 cm deep,...Ch. 7 - A 190-g block is launched by compressing a spring...Ch. 7 - Prob. 58PCh. 7 - An 840-kg roller-coaster car is launched from a...Ch. 7 - Prob. 60PCh. 7 - A child sleds down a frictionless hill whose...Ch. 7 - A bug lands on top of the frictionless, spherical...Ch. 7 - A particle of mass m is subject to a force...Ch. 7 - A block of weight 4.5 N is launched up a 30...Ch. 7 - Your engineering department is asked to evaluate...Ch. 7 - Your roommate is writing a science fiction novel...Ch. 7 - You have a summer job at your universitys zoology...Ch. 7 - Biomechanical engineers developing artificial...Ch. 7 - Blocks with different masses are pushed against a...Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....
Additional Science Textbook Solutions
Find more solutions based on key concepts
61. Consider the reaction between calcium oxide and carbon dioxide:
A chemist allows 14.4 g of and 13.8 g of ...
Introductory Chemistry (6th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology (7th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Using the forked-line, or branch diagram, method, determine the genotypic and phenotypic ratios of these trihyb...
Concepts of Genetics (12th Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The hall launcher in the machine sends metal halls up one side of the machine and then into play. The spring in the launcher (Fig. P7.44) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting. Figure P7.44arrow_forwardA particle is suspended from a post on top of a can by a light string of length L. as shown in Figure P9.57a. The can and particle are initially moving to the right at constant speed the with the string vertical. The can suddenly comes to rest when it runs into and sticks to a bumper as shown in Figure P9.57b. The suspended panicle swings through an angle . (a) Show that the original speed of the cart can be computed from. vi=2gL(1cos) (b) If the bumper is still exerting a horizontal force on the cart when the hanging panicle is at its maximum angle forward from the vertical. at what moment does the bumper stop exerting a horizontal force?arrow_forwardA toy cannon uses a spring to project a 5.30-g soft rubber ball. The spring is originally compressed by 5.00 cm and has a force constant of 8.00 N/m. When the cannon is fired, the ball moves 15.0 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.032 0 N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? (b) At what point does the hall have maximum speed? (c) What is this maximum speed?arrow_forward
- Why is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The ball launcher in the machine sends metal balls up one side of the machine and then into play. The spring in the launcher (Fig. P6.60) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting.arrow_forwardA 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P8.62a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P8.62b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P8.62c). The object is then forced toward the left by the spring (Fig. P8.62d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P8.62e). Find (a) the distance of compression d, (b) the speed vat the unstretched posi-tion when the object is moving to the left (Fig. P8.624), and (c) the distance D where the abject comes to rest. Figure P8.62arrow_forwardA block of mass m1 = 20.0 kg is connected to a block of mass m2 = 30.0 kg by a massless string that passes over a light, frictionless pulley. The 30.0-kg block is connected to a spring that has negligible mass and a force constant of k = 250 N/m as shown in Figure P7.73. The spring is un-stretched when the system is as shown in the figure, and the incline is frictionless. The 20.0-kg block is pulled a distance h = 20.0 cm down the incline of angle = 40.0 (so that the 30.0-kg block is 40.0 cm above the floor) and released from rest. Find the speed of each block when the 30.0-kg block is 20.0 cm above the floor (that is, when the spring is unstretched). Figure P7.73arrow_forward
- There is a compressed spring between two laboratory carts of masses m1 and m2. Initially, the carts are held at rest on a horizontal track (Fig. P10.40A). The carts are released, and the cart of mass m1 has velocity v1 in the positive x direction (Fig. P10.40B). Assume rolling friction is negligible. a. What is the net external force on the two-cart spring system? b. Find an expression for the velocity of cart 2. c. Sometimes, mistakes are made in a laboratory. For example, what changes in parts (a) and (b) if the track is not level as shown in Figure P10.40C? Explain your answer.arrow_forwardAn open box slides across a frictionless, icy surface of a frozen lake. What happens to the speed of the box as water from a rain shower falls vertically downward into the box? Explain.arrow_forwardA spring with spring constant k=600 N/m is compressed by 10 cm and launches a ball vertically into the air. The mass of the ball is 2.0 kg. Determine how high the ball will be launched.arrow_forward
- When a 65 kg cheerleader stands on a vertical spring, the spring compresses by 5.5 cm. When a second cheerleader stands on the shoulders of the first, the spring compresses an additional 4.5cm. What is the mass of the second cheerleader? 45 kg 50kg 53kg 59kg 63kgarrow_forwardA person accelerates a 12 kg mass at 2.7m/(s^2) by pulling on a spring that is 1.1 m long at rest. The coefficient of friction between the two surfaces is 0.2. L 3 If the spring extends to 1.35 m, what is the spring. constant k? k = 129.6N/m ? 0%arrow_forwardransfer from a 400km ne both planets move Q 100% Q Q 100% Q 3) A bungee jumper of mass 65.0 kg jumps off of a bridge with a long bungee cord tied safely and securely to their legs. The bungee cord is assumed to behave like a perfect spring. Below you can find a graph representing the bungee jumper's height above the ground as a function of time. c) Describe two assumptions that were made in this scenario, and explain how this "ideal" scenario would differ in the real world, where these assumptions are not valid.I 100 1,0 15 Time (s) While stretched to its greatest length, the bungee cord is under high tension, and begins to vibrate due to resonance with the local air currents. It's observed behaviour is that of a standing wave on a string which is fixed at both ends. A camera captures an image of the bungee cord, seen below. (note that this image represents its full length) a) Determine the spring constant of this bungee cord. b) Calculate the maximum velocity of the bungee jumper…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY