Concept explainers
For Exercises 33–56, find the LCD. Then convert each expression to an equivalent expression with the denominator equal to the LCD. (See Examples 3–5.)
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Beginning and Intermediate Algebra
- In Exercises 101–103, perform the indicated operations. 1 1 1 101. x" – 1 x" + 1 x2" – 1 (1-X- -X ) (1 – (1 – 102. (1 - x + 1) x + 2 x + 3 103. (x – y)-1 + (x – y)-2arrow_forwardIn Exercises 126–129, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. 126. Once a GCF is factored from 6y – 19y + 10y“, the remaining trinomial factor is prime. 127. One factor of 8y² – 51y + 18 is 8y – 3. 128. We can immediately tell that 6x? – 11xy – 10y? is prime because 11 is a prime number and the polynomial contains two variables. 129. A factor of 12x2 – 19xy + 5y² is 4x – y.arrow_forwardFor Exercises 115–120, factor the expressions over the set of complex numbers. For assistance, consider these examples. • In Section R.3 we saw that some expressions factor over the set of integers. For example: x - 4 = (x + 2)(x – 2). • Some expressions factor over the set of irrational numbers. For example: - 5 = (x + V5)(x – V5). To factor an expression such as x + 4, we need to factor over the set of complex numbers. For example, verify that x + 4 = (x + 2i)(x – 2i). 115. а. х - 9 116. а. х? - 100 117. а. х - 64 b. x + 9 b. + 100 b. x + 64 118. а. х — 25 119. а. х— 3 120. а. х — 11 b. x + 25 b. x + 3 b. x + 11arrow_forward
- Find the value of a + b + c in the following diagram.arrow_forwardIn Exercises 133–136, factor each polynomial completely. Assume that any variable exponents represent whole numbers. 133. y + x + x + y 134. 36x2" – y2n 135. x* 3n 12n 136. 4x2" + 20x"y" + 25y2marrow_forwardExpand 2(c+ 3). 2(c + 3) = Darrow_forward
- Make Sense? In Exercises 135–138, determine whether each statement makes sense or does not make sense, and explain your reasoning. 135. I use the same ideas to multiply (V2 + 5) (V2 + 4) that I did to find the binomial product (x + 5)(x + 4). 136. I used a special-product formula and simplified as follows: (V2 + V5)? = 2 + 5 = 7. 137. In some cases when I multiply a square root expression and its conjugate, the simplified product contains a radical. 138. I use the fact that 1 is the multiplicative identity to both rationalize denominators and rewrite rational expressions with a common denominator.arrow_forward-4(9-7)arrow_forwardIn Exercises 132–137, factor each polynomial. Assume that all variable exponents represent whole numbers. 132. 9x2" + x" – 8 133. 4x2n – 9x" + 5 134. an+2 – a"+2 – 6a? 135. b2n+2 + 3b"+2 10b2 136. 3c"+2 10c"+1 + 3c" 137. 2d"+2 5d"+1 + 3d"arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt